
 
 

 
  

 
HOST-BASED MULTIVARIATE 

STATISTICAL COMPUTER OPERATING 
PROCESS ANOMALY INTRUSION 

DETECTION SYSTEM (PAIDS) 
THESIS 

 

Glen R. Shilland, Major, USAF 

 

AFIT/GOR/ENS/09-15 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

 
AIR FORCE INSTITUTE OF TECHNOLOGY 

 
Wright-Patterson Air Force Base, Ohio 

 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 



 
 

 

 

 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the United 
States Government. 

  



 
 

 
AFIT/GOR/ENS/09-15 
 
 
 
 

HOST-BASED MULTIVARIATE STATISTICAL COMPUTER OPERATING 
PROCESS ANOMALY INTRUSION DETECTION SYSTEM (PAIDS) 

 
THESIS 

 
 
 

Presented to the Faculty 
 

Department of Operations Research 
 

Graduate School of Engineering and Management 
 

Air Force Institute of Technology 
 

Air University 
 

Air Education and Training Command 
 

In Partial Fulfillment of the Requirements for the 
 

Degree of Master of Science in Operations Research 
 
 
 
 
 

Glen R. Shilland 
 

Major, USAF 
 
 

March 2009 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
  



 
 

AFIT/GOR/ENS/09-15 
 

 

 

 

HOST-BASED MULTIVARIATE STATISTICAL COMPUTER OPERATING 
PROCESS ANOMALY INTRUSION DETECTION SYSTEM (PAIDS) 

 
 
 

Glen R. Shilland 
Major, USAF 

 
 
 
 
 
 
 

Approved: 
 
 
 
 ____________________________________     
 Kenneth W. Bauer, Jr., PhD (Chairman)   Date  
 
 
 ____________________________________     
 Jeffrey W. Humphries, Lt Col, PhD, USAF (Reader) Date 
 
 



iv 
 

AFIT/GOR/ENS/09-15 

Abstract 

 
  Most intrusion detection systems rely on signature matching of known malware or 

anomaly discrimination by data mining historical network traffic.   This renders defended 

systems vulnerable to new or polymorphic code and deceptive attacks that do not trigger 

anomaly alarms.  A lightweight, self-aware intrusion detection system (IDS) is essential 

for the security of government and commercial networks, especially mobile, ad-hoc 

networks (MANETs) with relatively limited processing power.  This research proposes a 

host-based, anomaly discrimination IDS using operating system process parameters to 

measure the “health” of individual systems.  Principal Component Analysis (PCA) is 

employed for feature set selection and dimensionality reduction, while Mahalanobis 

Distance (MD) and is used to classify legitimate and illegitimate activity.  This 

combination of statistical methods provides an efficient computer operating process 

anomaly intrusion detection system (PAIDS) that maximizes detection rate and 

minimizes false positive rate, while updating its sense of “self” in near-real-time. 

  



v 
 

AFIT/GOR/ENS/09-15 

 

 

 

 

 

 

 

 

 

To my grandfather, who taught me the virtues of integrity, service, and excellence before 

I had ever heard of the Air Force. 
  



vi 
 

Acknowledgements 
 
 
 I would like to express my sincere appreciation to my faculty advisor, for his 

guidance and encouragement throughout the course of this thesis, especially when neither 

of us was entirely certain it was actually going to become a thesis.  He sincerely tried to 

get me to enjoy myself, and though I still think multivariate statistics is one step away 

from magic, I think I'm finally starting to grasp how it works.  Thank you to those at Air 

Force Research Laboratory who got me started on the path towards a possible cyber 

application for QuEST, and to those at the Air Force Information Operations Center who 

may yet turn this into something useable. 

 I am also deeply indebted to my classmates, without whom I would still be trying 

to tackle basic probability and programming.  I would never have made it through this 

program without study groups and individual help with coding and concepts. 

 Thank you to my father for his editorial expertise and to my mother for her 

encouragement of all my educational endeavors.  Of course, none of this would be 

possible without the love and support of my wife and children.  Words cannot express my 

indebtedness to them for their patience and perseverance. 

 

 
 
       Glen R. Shilland 
 
Sample 11.  Acknowledgments 
 
 
 
Note:  It is prohibited to include any personal information in the following categories about U.S. citizens, DoD Employees and 
military personnel: social security account numbers; home addresses; dates of birth; telephone numbers other than duty officers 
which are appropriately made available to the general public; names, locations and any other identifying information about family 
members of DoD employees and military personnel.  



vii 
 

Table of Contents 
ABSTRACT   ............................................................................................................................................... IV

ACKNOWLEDGEMENTS   ........................................................................................................................... VI

TABLE OF CONTENTS   .............................................................................................................................. VII

LIST OF FIGURES   ...................................................................................................................................... IX

LIST OF TABLES   ......................................................................................................................................... X

I. BACKGROUND   ................................................................................................................................ 1

1.1 INTRODUCTION   ..................................................................................................................................... 1
1.2 WHAT IS AN INTRUSION?   ........................................................................................................................ 2
1.3 WHAT IS MALWARE?   ............................................................................................................................. 4
1.4 WHO IS THE THREAT?   ............................................................................................................................ 5
1.5 THE FIRST LINE OF DEFENSE   ..................................................................................................................... 7
1.6 WHAT IS AN IDS?   ................................................................................................................................. 9
1.7 A HOST-BASED, STATISTICAL ANOMALY IDS PROPOSAL   ............................................................................... 11
1.8 OPTIMIZATION   .................................................................................................................................... 13

II. LITERATURE REVIEW   ..................................................................................................................... 14

2.1 INTRUSION DETECTION CATEGORIZATION   ................................................................................................. 14
2.1.1 Host-Based   ............................................................................................................................ 15
2.1.2 Network-Based   ..................................................................................................................... 17
2.1.3 Signature-Based   .................................................................................................................... 19
2.1.4 Anomaly-Based   ..................................................................................................................... 20
2.1.5 Specification-Based   ............................................................................................................... 23

2.2 MOBILE AD-HOC NETWORKS  ................................................................................................................. 23
2.3 DIMENSION REDUCTION   ....................................................................................................................... 24

2.3.1 Principal Component Analysis   ............................................................................................... 25
2.3.2 Factor Analysis   ...................................................................................................................... 26
2.3.3 Dimensionality Assessment   .................................................................................................. 28

2.4 ANOMALY CLASSIFICATION   .................................................................................................................... 30
2.4.1 Discriminant Analysis   ............................................................................................................ 30
2.4.2 Quadratic Discrimination and Mahalanobis Distance   .......................................................... 31
2.4.3 Support Vector Machines  ...................................................................................................... 34
2.4.4 Decision Trees   ....................................................................................................................... 36
2.4.5 Genetic Algorithms   ............................................................................................................... 37
2.4.6 Neural Networks   ................................................................................................................... 38
2.4.7 Immune System Algorithms   .................................................................................................. 39

2.5 DATA GENERATION   ............................................................................................................................. 40
2.5.1 Repeatable, Sanitized, and Realistic   ..................................................................................... 40
2.5.2 Trustworthiness   .................................................................................................................... 42

III. METHODOLOGY   ............................................................................................................................ 43

3.1 PROBLEM DEFINITION   .......................................................................................................................... 43
3.1.1 Assumptions and Hypotheses   ............................................................................................... 43
3.1.2 Properties of PAIDS   ............................................................................................................... 44

3.2 TOOLS   ............................................................................................................................................... 45
3.2.1 MATLAB®   .............................................................................................................................. 45
3.2.2 TaskInfo   ................................................................................................................................ 45



viii 
 

3.2.3 Sub7   ...................................................................................................................................... 46
3.3 EXPERIMENTAL DESIGN   ........................................................................................................................ 48

3.3.1 Factors   .................................................................................................................................. 48
3.3.2 Test Runs   ............................................................................................................................... 48
3.3.3 Data Collection   ..................................................................................................................... 50

3.4 IMPLEMENTATION   ............................................................................................................................... 51
3.4.1 Hardware Environment   ......................................................................................................... 51
3.4.2 Software Environment   .......................................................................................................... 52
3.4.3 Data Acquisition and Formatting   .......................................................................................... 55

3.5 STATISTICAL METHODS   ......................................................................................................................... 60
3.5.1 Factor Analysis   ...................................................................................................................... 60
3.5.2 Principal Component Analysis   ............................................................................................... 63
3.5.3 Quadratic Discrimination   ...................................................................................................... 67

IV. RESULTS AND ANALYSIS   ................................................................................................................ 68

4.1 OCT 31 TEST – COMPONENT SCORES   ..................................................................................................... 68
4.2 NOV 7 TEST – COMPONENT SCORES VS. TIME   .......................................................................................... 72
4.3 NOV 21 TEST – PRINCIPAL COMPONENT ANALYSIS-MAHALANOBIS DISTANCE (PCA-MD)   ............................... 76
4.4 NOV 25 TEST – PCA-PCA-MD  ............................................................................................................. 81
4.5 PCA-PCA-MD-QD   ............................................................................................................................ 96
4.6 COMPARISON TO OTHER IDSS   ................................................................................................................ 98
4.7 KEY OPERATING SYSTEM PROCESSES   ..................................................................................................... 100

V. DISCUSSION   ................................................................................................................................ 103

5.1 CONCLUSIONS   .................................................................................................................................. 103
5.2 LIMITATIONS   .................................................................................................................................... 104
5.3 CONTRIBUTIONS   ............................................................................................................................... 105
5.4 FUTURE RESEARCH   ............................................................................................................................ 107

APPENDIX A – OUTPUT DATA FROM TASKINFO IN EXCEL FORMAT   ...................................................... 109

APPENDIX A – OUTPUT DATA FROM TASKINFO IN EXCEL FORMAT (CONT.)   ......................................... 110

APPENDIX B – SUBSEVEN COMMAND SCREENS   ................................................................................... 111

APPENDIX C – TASKINFO SCREENSHOT   ................................................................................................ 112

APPENDIX D – IMPORT DATA   ............................................................................................................... 113

APPENDIX E – PRINCIPAL COMPONENT ANALYSIS BASELINE   ............................................................... 115

APPENDIX F – PCA/MAHALANOBIS DISTANCE   ..................................................................................... 116

APPENDIX G – FACTOR ANALYSIS/MAHALANOBIS DISTANCE   .............................................................. 118

APPENDIX H – 2-WAY QUADRATIC DISCRIMINATION   .......................................................................... 120

APPENDIX I – 3-WAY QUADRATIC DISCRIMINATION   ............................................................................ 122

APPENDIX J – NOV21 TEST PLAN   .......................................................................................................... 124

BIBLIOGRAPHY   ..................................................................................................................................... 125

VITA   ..................................................................................................................................................... 130

 
  



ix 
 

List of Figures 
 
FIGURE 1 – PERCENTAGE OF INCIDENTS REPORTED TO US-CERT IN FY07 (GAO, 2008)   .................................................. 3
FIGURE 2 – PERCENTAGE OF INCIDENTS REPORTED TO US-CERT IN FY08 Q4 (USCERT, 2008)   ....................................... 8
FIGURE 3 – EXAMPLE NETWORK INTRUSION MONITOR LOCATIONS (DA SILVA, ET AL., 2005)   .......................................... 17
FIGURE 4 – EXPLORATORY FACTOR ANALYSIS DIAGRAM   ............................................................................................ 27
FIGURE 5 – CATTELL'S SCREE TEST   ........................................................................................................................ 29
FIGURE 6 – MAX EUCLIDEAN DISTANCE OF EIGENVALUE CURVE FROM SECANT LINE ON LOG SCALE (JOHNSON, 2008)   ........ 30
FIGURE 7 – EXAMPLE MAHALANOBIS DISTANCE   ...................................................................................................... 32
FIGURE 8 - CONFUSION MATRIX   ........................................................................................................................... 34
FIGURE 9 – SUPPORT VECTOR MACHINE CLASSIFIER (KHAN, AWAD, & THURAISINGHAM, 2007)   ..................................... 36
FIGURE 10 – BASIC ITERATION OF A GENETIC ALGORITHM (PILLAI, ET AL., 2004)   .......................................................... 38
FIGURE 11 – NEURAL NETWORK (BALDUCELLI, ET AL.)   ............................................................................................. 39
FIGURE 12 – ARTIFICIAL IMMUNE INTRUSION DETECTION SYSTEM (TARAKANOV, 2008)   ................................................ 40
FIGURE 13 – OCT 31 FIRST TWO PRINCIPAL COMPONENT SCORES   ............................................................................. 70
FIGURE 14 – OCT 31 EVALUATED WITH PCA-PCA-MD TECHNIQUE   .......................................................................... 71
FIGURE 15 – NOV 7 FIRST TWO PRINCIPAL SCORES ALL RUNS   ................................................................................... 73
FIGURE 16 – NOV 7 RUN1 FIRST THREE PCA SCORES VS. TIME   ................................................................................. 74
FIGURE 17 – NOV 7 RUN2 FIRST THREE PCA SCORES VS. TIME   ................................................................................. 74
FIGURE 18 – NOV 7 RUN3 FIRST THREE PCA SCORES VS. TIME   ................................................................................. 75
FIGURE 19 – NOV 7 RUN4 FIRST THREE PCA SCORES VS. TIME   ................................................................................. 75
FIGURE 20 – NOV 7 RUN5 FIRST THREE PCA SCORES VS. TIME   ................................................................................. 75
FIGURE 21 – NOV 21 RUN7 (CLEAN) ALL VS. RUN7 (CLEAN) ALL   ............................................................................... 78
FIGURE 22 – NOV 21 RUN7 (CLEAN) ALL VS. RUN10 (CLEAN) ALL   ............................................................................. 78
FIGURE 23 – NOV 21 RUN7 VS. RUN7(CLEAN), RUN13(DIRTY), AND RUN12(INFECTED)   ............................................... 80
FIGURE 24 – NOV 25 RUN1 (CLEAN) VS. RUN1 (CLEAN/INFECTED) - KAISER’S CRITERION   ............................................... 83
FIGURE 25 – NOV 25 RUN1 (CLEAN) VS. RUN1 (CLEAN/INFECTED) - 80% VARIANCE   ..................................................... 83
FIGURE 26 – NOV 25 RUN1 (CLEAN) VS. RUN1 (CLEAN/INFECTED) - KEY VARIABLES   ..................................................... 84
FIGURE 27 – NOV25 RUN1 (CLEAN/INFECTED) PCA-PCA-MD COMPARISONS   ............................................................ 86
FIGURE 28 – NOV25 RUN2 (CLEAN/DIRTY) PCA-PCA-MD COMPARISONS   ................................................................. 87
FIGURE 29 – NOV25 RUN3 (CLEAN/DIRTY/INFECTED) PCA-PCA-MD COMPARISONS   ................................................... 88
FIGURE 30 – NOV 21 RUN7 FIRST 20S VS. RUN7 (CLEAN) ALL   .................................................................................. 90
FIGURE 31 – NOV 21 CLEAN RUNS FIRST 20S VS. ALL DATA   ..................................................................................... 91
FIGURE 32 – NOV21 CLEAN RUNS WITH VARIOUS BASELINE WINDOW LENGTHS   .......................................................... 91
FIGURE 33 – NOV21 RUN7 WITH VARIOUS BASELINE WINDOW LENGTHS   ................................................................... 92
FIGURE 34 – NOV 21 RUN7 FIRST 40S VS. RUN7 (CLEAN) AND RUN13 (DIRTY)   ........................................................... 93
FIGURE 35 – NOV 21 RUN7 FIRST 20S VS. RUN7 (CLEAN) RUN13 (DIRTY) AND RUN12 (INFECTED)   ................................. 94
FIGURE 36 – NOV 21 RUN7 LAST 20S VS. RUN7 LAST 20S (CLEAN) RUN13 (DIRTY) RUN12 (INFECTED)   ........................... 94
FIGURE 37 – NOV 21 RUN13 FIRST 20S VS. RUN13 (DIRTY) AND RUN12 (INFECTED)   .................................................... 95
FIGURE 38 – NOV 21 RUN13 FIRST 40S VS. RUN13 (DIRTY) AND RUN12 (INFECTED)   .................................................... 95
FIGURE 39 – NOV25 QUADRATIC DISCRIMINATION WITH INDIVIDUAL COVARIANCE MATRICES   ........................................ 96
FIGURE 40 – NOV25 QUADRATIC DISCRIMINATION WITH POOLED COVARIANCE MATRICES   ............................................ 97
FIGURE 41 - NOV21 QUADRATIC DISCRIMINATION WITH POOLED COVARIANCE MATRICES   ............................................. 97
FIGURE 42 - IDS EFFECTIVENESS RATES (WONG & LAI, 2006)   ................................................................................... 98
FIGURE 43 - IDS EFFECTIVENESS RATES (HUANG & LEE, 2003)  .................................................................................. 99
FIGURE 44 - COMPARISON OF IDS EFFECTIVENESS (CHEN, DAI, LI, & CHENG, 2007)   ..................................................... 99
 
  



x 
 

List of Tables 
 
TABLE 1 – INTRUSIONS AND INDICATORS (DENNING, 1986)   ........................................................................................ 2
TABLE 2 – TAXONOMY OF MALWARE (SKOUDIS & ZELTSER, 2004)   .............................................................................. 4
TABLE 3 – CYBER THREATS TO FEDERAL SYSTEMS AND CRITICAL INFRASTRUCTURES (GAO, 2008)   ..................................... 5
TABLE 4 – TYPICAL NETWORK-BASED IDS RULES (DA SILVA, ET AL., 2005)   .................................................................. 18
TABLE 5 – ANOMALY-BASED IDS MODELS (DENNING, 1986)   ................................................................................... 21
TABLE 6 – CHARACTERISTICS COLLECTED FOR EACH OPERATING SYSTEM PROCESS   ......................................................... 56
TABLE 7 – SAMPLE 1 NOTIONAL DATA   .................................................................................................................. 58
TABLE 8 – SAMPLE 2 NOTIONAL DATA   .................................................................................................................. 58
TABLE 9 – ROW VECTORS FOR SAMPLE NOTIONAL DATA   .......................................................................................... 58
TABLE 10 – EXAMPLE PCA LOAD MATRIX   ............................................................................................................. 66
TABLE 11 – OCT 31 RUN1 (NORMALNOACTIVITY) TIMELINE   ...................................................................................... 69
TABLE 12 – OCT 31 RUN2 (NORMALINTERNET) TIMELINE  ......................................................................................... 69
TABLE 13 – OCT 31 RUN3 (ABNORMALINTERNET) TIMELINE   ..................................................................................... 69
TABLE 14 – NOV 25 RUN1 (CLEAN/INFECTED) TIMELINE   .......................................................................................... 81
TABLE 15 – NOV 25 RUN2 (CLEAN/DIRTY) TIMELINE   ............................................................................................... 81
TABLE 16 – NOV 25 RUN3 (CLEAN/DIRTY/INFECTED) TIMELINE   ................................................................................. 81
 
 
  



1 
 

HOST-BASED MULTIVARIATE STATISTICAL COMPUTER OPERATING 
PROCESS ANOMALY INTRUSION DETECTION SYSTEM (PAIDS) 

 

I. Background 

1.1  Introduction 

Methods of cyberattack are limited only by human ingenuity, but most attacks 

take advantage of code vulnerabilities, the inherent trust architecture of Internet protocol, 

or insecure habits of users and administrators.  Cyberattacks vary in form from denial of 

service to scanning/probing to penetration, and emanate from a wide range of sources 

from pranksters to organized criminals to nation states.  “As systems become more 

complex, there are always exploitable weaknesses due to design and programming errors, 

or through the use of various “socially engineered” penetration techniques.” (Khan, 

Awad, & Thuraisingham, 2007)  The goal of cyberdefense in general, and an intrusion 

detection system (IDS) in particular, is to limit the impact of these inherent weaknesses, 

so that attacks are either thwarted outright or inflict the least amount of damage possible. 

 “The task of preventing unauthorized users from compromising the 

confidentiality, integrity, or availability of sensitive information, is increasingly difficult 

in the face of the growth in Internet use, the increasing skill levels of attackers 

themselves, and technological advances in their tools and methods of attack.”  (GAO, 

1996)  Thus, it is increasingly likely that attacks will be successful and go unnoticed.  

Assuming that any system is “crackable” by a determined adversary, the only way to 

mitigate an attack is through early detection and isolation.  Due to the diversity of attack 

avenues, commercial and government administrators struggle to defend themselves in a 



2 
 

constantly changing environment.  IDSs have emerged as essential tools to ensure 

security against these emerging threats. 

1.2  What is an intrusion? 

An intrusion is any use of a computer or network for which the user either does 

not have privileges or authorization.  It could be a penetration by an outsider or misuse by 

an insider, and the result could be denial, alteration, or theft of data.  The types of 

intrusion have changed very little since Dorothy Denning’s seminal work, An Intrusion 

Detection Model (1986), which lists examples of intrusions and indicators: 

Intrusion Type Possible Indicators 

Attempted 
break-in 

• High rate of password failures with respect to a single account or the 
system as a whole 

• [High rate of port access requests on a single host (portscan) or 
across a network (portsweep)] 

Masquerading 
or successful 
break-in 

• Different login time, location, or connection type from the account’s 
legitimate user 

• Different behavior pattern from legitimate user (browsing directories 
or executing system status commands vs. editing or compiling 
programs) 

Penetration by 
legitimate user 

• User executes different programs or triggers more protection 
violations from attempts to access unauthorized files or programs 

• User will have access to commands and files not normally permitted 
Leakage by 
legitimate user 

• Unusual login times or data routed to remote printers [or hosts] not 
normally used 

Inference by 
legitimate user 

• A user attempts to retrieve more records than usual in an attempt to 
aggregate or infer unauthorized data 

Trojan Horse • Behavior of planted or substituted program may differ from 
legitimate program in terms of its CPU time or I/O activity 

Virus • Increase in frequency of executable files rewritten, storage used by 
executable files, or a particular program being executed 

Denial of 
Service 

• Abnormally high resource activity with respect to a particular user 
while activity for all other users is abnormally low 

Table 1 – Intrusions and Indicators (Denning, 1986) 
 



3 
 

What makes these intrusions so difficult to detect is that “aberrant usage can also 

be linked with actions unrelated to security.  They could be a sign of a user changing 

work tasks, acquiring new skills, or making typing mistakes, software updates, or 

changing workload on a system.” (Denning, 1986)  Distinguishing between abnormal 

legitimate and illegitimate behavior is therefore very challenging.  Also, intruders are 

able to test the limits of an IDS to determine its characteristics, and then attempt to 

appear as normal as possible to avoid tripping alarms. 

“The number of incidents reported by federal agencies to the [U.S. - Computer 

Emergency Readiness Team] US-CERT has increased dramatically over the past 3 years, 

increasing from 3,634 incidents reported in fiscal year 2005 to 13,029 incidents in fiscal 

year 2007.” (GAO, 2008)  The most prevalent attacks for FY07 are presented in Figure 1, 

where “investigation” indicates unconfirmed incidents that are potentially malicious or 

anomalous activity deemed by the reporting entity to warrant further review. 

 
Figure 1 – Percentage of incidents reported to US-CERT in FY07 (GAO, 2008) 



4 
 

1.3  What is malware? 

Often when an intrusion occurs, whether from an internal or external source, the 

intent of attacker is to install some malicious code, known as malware, which will 

function either autonomously or with some human interaction to perform a desired task.  

The task could be annoying, such as sending an advertising email to everyone in the 

victim’s address book (a common goal of spammers) or it could be more insidious such 

as opening a backdoor to allow future unhindered attacks. 

Like all software, the functionality of malware is only limited by the creativity of 

the programmer.  However, malware generally falls into distinguishable categories of 

form and function.  Each type of malware has a specific purpose, with associated 

strengths and weaknesses, capabilities and limitations.  The discussion of cyberwarfare is 

easier when these terms, shown in Table 2, are used correctly (a Trojan is not a virus) but 

unfortunately many malware programs are combinations that defy simple classification.  

Malware Type Defining Characteristics 

Virus • Does not self-replicate, usually requires human interaction to spread 
from host to host, either through removable media or network  

Worm • Self-replicates, usually does not require human interaction to spread 
across a network 

Malicious 
Mobile Code 

• Lightweight programs that are downloaded from a remote system 
and executed locally with minimal or no user intervention  

Backdoor • Bypasses normal security controls to give an attacker access 
Trojan Horse • Disguises itself as a useful program while masking hidden malicious 

purposes 
User-Level 
Rootkit 

• Replaces or modifies executable programs used by system 
administrators and users 

Kernel-Level 
Rootkit 

• Manipulates the heart of the operating system, the kernel, to hide 
and create backdoors 

Combination • Combines various techniques listed above to increase effectiveness 
Table 2 – Taxonomy of Malware (Skoudis & Zeltser, 2004) 



5 
 

1.4  Who is the threat? 

Threats can come from anywhere at any time, but who is most likely to initiate a 

cyberattack?  Table 3 presents a partial list of the potential perpetrators. 

Threat source  Description  
Criminal groups  There is an increased use of cyber intrusions by 

criminal groups that attack systems for monetary 
gain.  

Foreign nation states  Foreign intelligence services use cyber tools as part 
of their information gathering and espionage 
activities. Also, several nations are aggressively 
working to develop information warfare doctrine, 
programs, and capabilities. Such capabilities enable 
a single entity to have a significant and serious 
impact by disrupting the supply, communications, 
and economic infrastructures that support military 
power—impacts that, according to the Director of the 
Central Intelligence Agency, can affect the daily lives 
of Americans across the country. 

Hackers  Hackers sometimes crack into networks for the thrill 
of the challenge or for bragging rights in the hacker 
community. While remote cracking once required a 
fair amount of skill or computer knowledge, hackers 
can now download attack scripts and protocols from 
the Internet and launch them against victim sites. 
Thus, attack tools have become more sophisticated 
and easier to use.  

Hacktivists  Hacktivism refers to politically motivated attacks on 
publicly accessible Web pages or e-mail servers. 
These groups and individuals overload e-mail 
servers and hack into Web sites to send a political 
message.  

Disgruntled insiders  The disgruntled insider, working from within an 
organization, is a principal source of computer 
crimes. Insiders may not need a great deal of 
knowledge about computer intrusions because their 
knowledge of a victim system often allows them to 
gain unrestricted access to cause damage to the 
system or to steal system data. The insider threat 
also includes contractor personnel.  

Terrorists  Terrorists seek to destroy, incapacitate, or exploit 
critical infrastructures to threaten national security, 
cause mass casualties, weaken the U.S. economy, 
and damage public morale and confidence. 
However, traditional terrorist adversaries of the 
United States are less developed in their computer 
network capabilities than other adversaries. 
Terrorists likely pose a limited cyber threat. The 
Central Intelligence Agency believes terrorists will 
stay focused on traditional attack methods, but it 
anticipates growing cyber threats as a more 
technically competent generation enters the ranks.  

Source: Federal Bureau of Investigation, unless otherwise indicated.  

Table 3 – Cyber Threats to Federal Systems and Critical Infrastructures (GAO, 2008) 
 



6 
 

Clearly, the list of adversaries is extensive, but how often are these attacks 

successful?  In a 1996 report (Information Security - Computer Attacks at Department of 

Defense Pose Increasing Risk), the GAO reported 

DISA estimates indicate that Defense may have been attacked as 
many as 250,000 times last year. However, the exact number is not 
known because, according to DISA, only about 1 in 150 attacks is 
actually detected and reported. In addition, in testing its systems, 
DISA attacks and successfully penetrates Defense systems 65 
percent of the time. According to Defense officials, attackers have 
obtained and corrupted sensitive information--they have stolen, 
modified, and destroyed both data and software. They have 
installed unwanted files and "back doors" which circumvent 
normal system protection and allow attackers unauthorized access 
in the future. They have shut down and crashed entire systems and 
networks, denying service to users who depend on automated 
systems to help meet critical missions. Numerous Defense 
functions have been adversely affected, including weapons and 
supercomputer research, logistics, finance, procurement, personnel 
management, military health, and payroll. 

In the last decade, the frequency and sophistication of attack vectors has 

increased, while the knowledge required to use them has decreased, thus exposing 

computer systems to a constantly expanding threat.  Recently in Estonia and 

Georgia, cyberattacks were used in conjunction with physical attacks to cripple 

the response of their respective governments.  Whether these attacks were 

initiated by state run agencies or merely “hacktivists” is irrelevant, the important 

point is that they were highly effective.  We are not entirely defenseless, however, 

and our safeguards have also increased considerably, primarily in the realm of 

security awareness and access control. 



7 
 

1.5  The first line of defense 

Multiple levels of security are necessary for a truly secure network.  Physical 

security can be considered the first layer of security.  This consists of not allowing 

unauthorized users physical access to secure computers or networks, such as keeping 

them sequestered in a vault with no connection to the Internet.  However, this can 

severely limit the utility of the system and is often not worth the inconvenience.   

Another frontline measure is operational security (OPSEC), which can be as 

simple as not associating certain pieces of information together which, when combined, 

reveal a secret or vulnerability.  Keeping passwords secure, limiting distribution of 

critical information, and restricting access to “need to know” are all examples of OPSEC.  

AFDD 2-5 -- Information Operations (11 January 2005) states that Operations Security is 

“not a collection of specific rules and instructions that can be applied to every operation, 

it is a methodology that can be applied to any operation or activity for the purpose of 

denying critical information to the adversary.  Critical information consists of data and 

indicators that are sensitive, but unclassified.  OPSEC aims to identify any unclassified 

activity or information that, when analyzed with other activities and information, can 

reveal protected and important friendly operations, information, or activities.”  OPSEC is 

everyone's responsibility, and is an important aspect of intrusion prevention.   

Information security awareness training also plays a large role in maintaining the 

integrity of a computer network.  Often, users are simply unaware that their actions are 

potentially harmful or may compromise a system.  “Users need to know the simple things 

that they can do to help to prevent intrusions, cyber attacks, or other security breaches. 



8 
 

All users of cyberspace have some responsibility, not just for their own security, but also 

for the overall security and health of cyberspace.” (NIAC 2003)  Administrators can go a 

long way towards protecting their system by merely educating users on basic security 

measures and enforcing their implementation.  Evidence that awareness of the threat is 

improving can be seen by comparing Figure 1 and Figure 2; the fact that more attempted 

intrusions and much less improper usage was reported in 2008 is encouraging. 

If these doctrinal methods are insufficient, as they often are, the traditional “first 

layer” of defense in computer security comes into effect – electronic security measures.  

Some examples of these include:  passwords and firewalls; authorization limits, such as 

administrator and user rights; and cryptologic devices to encode files and message traffic.  

This is the level at which people generally start thinking about network security, although 

most intrusions can be foiled at the physical and operational level long before they 

become a technological problem.  

 
Figure 2 – Percentage of incidents reported to US-CERT in FY08 Q4 (USCERT, 2008) 



9 
 

 
1.6  What is an IDS? 

Intrusion detection systems are the second (or third, or fourth) layer of defense, to 

notify administrators when the first line of defense has been penetrated or is being 

probed.  The idea of an IDS is “based on the hypothesis that exploitation of a system’s 

vulnerabilities involves abnormal use of the system; therefore, security violations could 

be detected from abnormal patterns of system usage.” (Denning, 1986)  Most IDSs 

attempt to parse network traffic data into a characteristic feature set that includes 

information such as:  type and amount of data transferred; time, frequency, and depth of 

access; and source/destination Transport Control Protocol/Internet Protocol (TCP/IP) 

addresses.  Although parsing network traffic is highly effective for identifying intrusions, 

it is increasingly difficult to characterize this data, especially in mobile ad-hoc networks 

(MANETs) with highly dynamic topologies.   

Intrusion detection systems can either be network-based or host-based.  The 

majority of commercial IDSs are network-based, but these are not useful for busy 

networks, cannot analyze encrypted data, and cannot tell if an attack was successful. 

(Mell, et al., 2003)  The primary concerns for a host-based IDS are its susceptibility to 

attack and its reliance on the computing power of the device.  “An attacker that is able to 

circumvent the security of the IDS could cause it to issue a large number of false 

negatives, effectively carrying out a denial of service attack, or could cause its detectors 

to malfunction.” (Merkle, et al., 2002)  Although this research is concentrated at the host 

level, the resulting algorithm could be used as part of a multi-layered network-based IDS.   



10 
 

Intrusion detection systems generally fall into two categories, anomaly detection 

(profile-matching) and misuse detection (signature-matching), although these types can 

be combined to form a specification-based system.  Standard anti-virus software is 

typically based on signature matching of previously identified malware code, and this is 

still the most effective method to detect known attacks.  However, since new malware is 

being created faster than patches can be deployed to signature libraries and much of it is 

polymorphic (self-mutating), regardless of how often they are updated there is no chance 

of predicting what the next code will look like.  Only anomaly detection is capable of 

identifying new types of attacks, because the IDS is looking for malevolent behavior or 

system reactions instead of attempting to recognize known code strings or network traffic 

patterns.  Obviously, the strongest defense would include both types of IDS at multiple 

layers of the network.  This research will use statistical methods of multivariate analysis 

to identify anomalies in operating system processes, thus retaining the ability to detect 

intrusions regardless of the vector.   

However, anomaly detection can also pose challenges, as it generally requires 

training at both normal and abnormal operating conditions.  The anomaly detection IDS 

must be taught to recognize its normal “self” and distinguish it from an abnormal “other” 

state.  The problem can be simplified by only training to one condition and assuming that 

anything not in that category is in the other, but this can lead to false positives if, for 

instance, a rare occurrence is not in the training data.  “The capacity of a certain 

environment to be self-aware is equivalent to the capacity to detect novelties emerging 

inside the environment itself.” (Balducelli, et al., 2007)  There are various methods 



11 
 

proposed in the literature to classify anomalies in this way, including discriminant 

analysis (DA), decision trees, support vector machines (SVM), and genetic algorithms 

(GA).  The major obstacle to building an anomaly detection system is establishing 

normality and finding the most effective feature set to expose abnormal conditions. 

1.7  A host-based, statistical anomaly IDS proposal 

Signature-based IDSs are very good at recognizing attacks which have been 

previously identified, but are unable to detect an attack for which no pattern has been 

determined.  Likewise, network-based IDSs are necessary to detect distributed attacks, 

but often cannot ascertain what is happening at the individual component level.  This 

research proposes that a host-based statistical anomaly IDS is necessary to defend against 

“zero day” attacks targeted at individual computer systems.  In addition, this research will 

show that an IDS can be designed using local operating system process data such as:  

percentage of kernel and total CPU used; number of threads, handles, and windows open 

in a process; and number and size of read/write operations.  The results of this research 

will be referred to as a process anomaly intrusion detection system (PAIDS).    

Using this type of data is similar to measuring temperature, blood pressure, white 

blood count, etc. in a human patient.  Although we may not be able to tell what kind of 

sickness (intrusion) is occurring, or where it is coming from, we can determine that 

something is wrong and take further action.  Edward Amoroso calls this method pattern 

matching and suggests that it “constitutes an especially powerful approach because it 

provides intrusion detection capability for attacks that might not be predictable.  In fact, 

human operators might detect subtle changes that they can neither explain nor 



12 
 

understand.” (1999, p. 65)  An added benefit to using this type of data to characterize an 

intrusion is that it may aid in detecting intrusions using removable media or other direct 

methods, which analysis of network traffic cannot do.  Although some intrusions, such as 

rootkit attacks, may subvert some of this data, the effects of these attacks should still be 

measurable in a multi-dimensional feature space.   

By collecting a wide range of variables, we can then use multivariate statistical 

methods to detect anomalies in these processes, and then classify the abnormal states as 

either legitimate activity or an illegitimate intrusion.  Most IDSs collect features based on 

network traffic to classify intrusions instead of “state of health” information directly from 

the host operating system.  By monitoring operating system behavior and hardware data, 

PAIDS can develop a sense of “self” and detect anomalies in this representation which is 

not vulnerable to standard code deception techniques generally employed by cyber 

attackers.  This sense of “self” contains certain characteristics described by an Air Force 

Research Laboratory and Air Force Institute of Technology working group called the 

Qualia Exploitation of Sensor Technology (QuEST) headed by Dr. Steven Rogers: 

1. Continuity – unbroken thread with a cohesive non-causal narrative of 
past, present and future 

2. Unity – sensor data is diverse, but is experienced by a single “mind” 
3. Embodiment – “mind” is anchored in a “body” that is embedded in an 

environment from which sensory experience is taken 
4. Sense of Free Will – the environment can be manipulated as a result of 

actions taken by the “body” determined by the “mind” 
5. Reflection – “mind” is aware of itself as a separate entity inside a 

world model 
 

PAIDS assumes an uncompromised “self” at installation and during the start-up 

process, but this is an unavoidable requirement in any IDS.      



13 
 

1.8  Optimization 

The most important aspect of optimizing intrusion detection is determining a 

subset of data to analyze that minimizes false positives (declaring an attack when there is 

none) and false negatives (not detecting a real attack) while maximizing true positives 

(detecting a real attack).  Since there is a vast amount of data available to the analyst, 

even an automatic system is quickly overwhelmed.  The challenge is to find the smallest 

feature set which still provides useful information.  Two primary statistical methods for 

dimension reduction are Principal Component Analysis (PCA) and Factor Analysis (FA).  

Both of these methods use linear combinations of variables to cluster data and capture the 

most variance of the original data in the smallest subset possible.  Once an anomaly has 

been identified in the smaller dimensional space, an analyst can investigate the incident 

further to determine the nature of the intrusion.  

Another problem with anomaly detection in the computer environment is the 

highly variable range of normal operating values, which makes identification of “self” 

challenging.  Standard anomaly detection algorithms have difficulty with this because 

they are based on a static measurement of historical data, which leads to a high false 

positive rate.  “Historically, minimizing the false positive rate has been a major goal of 

algorithm designers.” (Fox, Kiciman, & Patterson, 2004)  Typically, designers are only 

able to attain low false positives by lowering the true positive rate as well.  PAIDS is able 

to update its control limits and feature set in near-real-time, thus allowing it to recognize 

shifts in conditions caused either by normal operations or by low level attacks.  



14 
 

II. Literature Review 

2.1  Intrusion Detection Categorization 

“Hundreds of megabytes of data are collected every second that are of interest to 

computer security professionals. … What we need are systems that perform data mining 

at various levels on this corpus of data in order to ease the burden of the human analyst. 

… Systems that do this type of data mining for security information fall under the 

classification of intrusion detection systems.” (Brugger, et al., 2001)  Intrusion detection 

experts stress that an IDS is not an autonomous device, but a set of procedures to aid a 

trained analyst.  For instance, Stephen Northcutt states, “Intrusion detection is best 

thought of as a capability, not a single tool. ... Even the best intrusion detection system 

will be blind to an attack that it is not programmed to detect.” (1999, p. 16)  Edward 

Amoroso offers, “Intrusion detection is the process of identifying and responding to 

malicious activity targeted at computing and networking resources.” (1999, p. 16) 

(emphasis added) 

Amoroso goes on to identify five methods for intrusion detection (pp. 21-25): 

1. Audit trail processing 
2. On-the-fly processing 
3. Profiles of normal behavior 
4. Profiles of abnormal behavior 
5. Parameter pattern matching. 

In general, however, the computer security community has defined two levels for 

intrusion detection – at the host or on the network, and three major types of detectors – 

signature, anomaly, or specification-based.  There are advantages and disadvantages to 



15 
 

each of these, and the strongest defense is obviously multi-layered using all types of IDS.  

Some discussion of previously suggested IDS implementation follows. 

2.1.1  Host-Based 

 A host-based IDS resides on individual systems, and either reports data to a 

consolidated analysis center to be processed, or processes the data itself and performs 

automatic responses to detected intrusions.  Anti-virus software on a personal computer is 

a good example of a host-based IDS.  “Performing analysis strictly at the host level has 

the advantage of minimizing network load.  However, it has the disadvantage of not 

allowing the detection of broad scale attacks targeting a network of machines (for 

instance, an attacker sequentially hopping through a network performing brute force 

password guessing against each host.)” (Bace, 2000)  A host-based IDS is best suited for 

high activity systems, or whose compromise would pose a serious risk to operations.  “At 

the very least, host-based intrusion detection code should be deployed on all server 

systems, as well as corporate officers and other key personnel.” (Northcutt, 1999, p. 16) 

One major problem, “with the host-based IDS is the high processing overhead 

that they impose on their host.” (Kabiri & Ghorbani, 2005)  This can be significant for 

MANETs or wireless sensor networks where according to da Silva, et al. (2005) “nodes 

are designed to be cheap and small, [so] they do not have enough hardware resources.  

Thus, the available memory may not be sufficient to create a detection log.”  Various 

schemes have been developed to avoid this problem, such as elected monitors for a 

cluster of nodes (Huang & Lee, 2003), a multi-layered collaborative approach to intrusion 

detection at both host and network level (Yongguang, Wenke, & Huang, 2003), or 



16 
 

through the use of multivariate statistical techniques to reduce the dimensionality of the 

data to be analyzed. (Chen, et al., 2007)  The latter technique will be used in this research 

to limit the impact on a host's processing capabilities. 

Another disadvantage of a host-based IDS is “operating system vulnerabilities can 

undermine the integrity of host-based agents and analyzers.” (Bace, 2000)  In other 

words, attacks that target the operating system upon which the host-based IDS resides, 

such as a rootkit attack, might subvert the operation of the IDS itself.  Of course, network 

IDSs are susceptible to this as well.  Mell, et al. (2003) describe several attacks: 

1. Sending a large amount of non-attack traffic with volume exceeding 
the IDS’s processing capability. With too much traffic to process, an 
IDS may drop packets and be unable to detect attacks. 
 

2. Sending to the IDS non-attack packets that are specially crafted to 
trigger many signatures within the IDS, thereby overwhelming the 
IDS’s human operator with false positives or crashing alert processing 
or display tools. 
 

3. Sending to the IDS a large number of attack packets intended to 
distract the IDS’s human operator while the attacker instigates a real 
attack hidden under the “smokescreen” created by the multitude of 
other attacks. 

 
4.   Sending to the IDS packets containing data that exploit a vulnerability 

within the IDS processing algorithms. Such attacks will only be 
successful if the IDS contains a known coding error that can be 
exploited by a clever attacker. Fortunately, very few IDSs have had 
known exploitable buffer overflows or other vulnerabilities. 

 
One way to mitigate the risk to individual hosts is by keeping the signature-based 

operating system service pack updated to “patch” known code vulnerabilities so they are 

no longer susceptible to known attacks.  Another more difficult method of avoiding this 

risk is to incorporate the IDS into the operating system software itself such as the latest 



17 
 

attempts by Microsoft in its Vista platform, or by designing an inherently more secure 

operating system, such as the multi-level security access structure proposed by Bell and 

LaPadula. (1973)  Since PAIDS works in a multivariate feature space and the feature set 

is capable of change in near-real-time, it is less susceptible to deception than other host-

based IDSs. 

2.1.2  Network-Based 

A network-based IDS is one in which “a distributed system will protect the 

network as a whole.  In this architecture the IDS might control or monitor network 

firewalls, network routers or network switches as well as the client machines.” (Kabiri & 

Ghorbani, 2005)  A network IDS will generally record and parse network traffic data 

with monitoring agents, then either let these nodes process the data or report the data to a 

centrally located decision node.   

 
Figure 3 – Example Network Intrusion Monitor Locations (da Silva, et al., 2005) 

 



18 
 

A network-based IDS can reside either inside or outside a firewall, but as 

Northcutt states, “if your network-based IDS is located outside your firewall, you would 

never see an internal attack.” (p. 21)  Depending on the level of security desired and the 

resources available, there will be multiple IDS monitors in a variety of locations (Figure 

3) to ensure the maximum exposure while minimizing the distance between sensors and a 

possible intruder. 

An IDS is defined by the measurements it makes and the rules it applies to these 

measurements.  Though rules vary, there are standard intrusions which can be detected 

with a typical rule set such as those described in Table 4 for wireless networks. 

Rule Description Attack Detected 

Interval Time between receipt of two 
consecutive messages is larger 
or smaller than allowed limits 

• Negligence – Intruder does not 
send data from tampered node 

• Exhaustion – intruder increments 
sending rate to increase energy 
consumption of neighbors 

Retransmission Tampered node does not 
forward received message 

• Blackhole/Selective Forwarding – 
Intruder suppresses some or all 
messages from retransmission 

Integrity Check to make sure message 
payload is the same along the 
entire network path 

• Modification – Intruder 
aggregates or otherwise modifies 
contents of a received message 

Delay Retransmission does not occur 
before a defined timeout 

• Blackhole 
• Negligence 

Repetition Same message can only be 
retransmitted only a limited 
number of times 

• Denial of Service – Intruder 
attempts to monopolize node 
resource 

Radio 
Transmission 

Messages must originate from 
at most one hop away 

• Wormhole/Helloflood – Intruder 
sends message to far located node 
to increase energy consumption 

Jamming Number of collisions must be 
lower than an expected value 

• Jamming – Intruder introduces 
noise to disturb communications 

Table 4 – Typical Network-based IDS Rules (da Silva, et al., 2005) 



19 
 

Of course, network-based IDSs also have disadvantages.  “Network agents can 

monitor and detect network attacks (e.g. SYN flood and packet storm attacks). … [but] 

… Although some network-based systems can infer from network traffic what is 

happening on hosts, they cannot tell the outcome of commands executed on the host.  

This is an issue in detection, when distinguishing between user error and malfeasance.” 

(Bace, 2000)  Thus, a fully protected network will still need some form of host-based 

intrusion detection. 

One of the major setbacks to a network IDS is the amount of network traffic 

generated by the monitoring agents.  For instance, one of the earliest efforts at a network-

based IDS, the Distributed Intrusion Detection System (DIDS), developed by Snapp, et 

al. (1991) had scalability issues…“the data flow between host monitors and the director 

agent may generate significantly high network traffic overheads.” (Shyu, et al., 2007) 

2.1.3  Signature-Based 

Despite the best efforts of computer scientists, “any computer system or network 

has known vulnerabilities that an intruder can exploit.  However, it is more efficient to 

detect intrusions that exploit these known vulnerabilities through the use of explicit 

expert system rules than through statistical anomaly detection.” (Anderson, Frivold, & 

Valdes, 1995)  The rules that detect previously identified exploitations are known as 

signatures.  These signatures can be code strings, sequences of events, or other patterns 

indicative of malware.  “Signatures are patterns corresponding to known attacks or 

misuses of systems.” (Bace, 2000)  Most anti-virus software uses a database of these 

signatures to detect malicious activity, and they require frequent updates since new 



20 
 

malware is created daily.  If the exact signature does not exist in the database, then the 

IDS will not detect the malware. 

There are “some intrusion experts [who] believe that most novel attacks are 

variants of known attacks and the “signature” of known attacks can be sufficient to catch 

novel variants.” (Khan, Awad, & Thuraisingham, 2007)  Though it is true that “script 

kiddies” create much of new malware by slightly altering old code in a vain attempt to 

avoid anti-virus software, real hackers are smart enough to alter their signatures 

significantly enough so that the only chance to defend against a zero-day attack will be 

through anomaly detection.  Also, polymorphic code has progressed to a point that the 

required signature libraries to detect all known attacks have become too large to be useful 

on a system with limited memory. 

2.1.4  Anomaly-Based 

“In pursuit of a secure system, different measures of system behavior have been 

proposed, on the basis of an ad hoc presumption that normalcy and anomaly 

(illegitimacy) will be accurately manifested in the chosen set of system features.” (Khan, 

Awad, & Thuraisingham, 2007)  The objective of an anomaly-based IDS “is to define the 

normal behavior and consequently anomaly in the behavior of the system.” (Kabiri & 

Ghorbani, 2005)  This has typically been accomplished by attempting to build patterns of 

user activity, network traffic, or system parameters.  The patterns are generally of normal 

activity, so any anomalies will be represented as intrusions, while patterns of abnormal 

conditions generally fall under the purview of signature-based detection. 



21 
 

The first to suggest an anomaly-based IDS was Dorothy Denning in An Intrusion 

Detection Model (1986) when she suggested several statistical methods for detecting 

anomalies in user behavior by monitoring a system’s audit records, shown in Table 5.  

This “model is independent of any particular system, application environment, system 

vulnerability, or type of intrusion, thereby providing a framework for a general-purpose 

intrusion detection expert system.” (Denning, 1986)  The model did not go into specific 

applications, but merely suggested methods for implementation of future work. 

Model Abnormality Indicators 

Operational • New observation of random variable x exceeds fixed limits based 
on empirical data 

Mean and 
Standard 
Deviation 

• New observation of random variable xn+1 exceeds confidence 
interval that is d standard deviations away from mean of x1,…, x

• No prior knowledge is needed to establish normality and users 
[hosts] can have different means depending on usage behaviors 

n 

Multivariate • Similar to Mean and Standard Deviation except that it is based on 
correlations among two or more metrics 

Markov 
Process 

• New observation is abnormal if its probability as determined by 
the previous state and the transition matrix is too low 

Time Series • New observation is abnormal if its probability as determined by 
order and inter-arrival time is too low 

Table 5 – Anomaly-Based IDS Models (Denning, 1986) 
 

 “Statistical analysis finds deviations from normal patterns of behavior.  This 

feature, common in research settings, is found in few commercial intrusion detection 

products.” (Bace, 2000)  This is probably because, “it is indeed very difficult to fix the 

threshold of alarm on a statistical variable.  Too low, and the false alarm rate increases to 

unacceptable levels.  Too high, and there is a risk of missing an alarm.” (Debar, Becker, 

& Siboni, 1992)  Also, “it is required to monitor the system within an intrusion free 

working environment for a while. … [and] … Since the user is a human being and 



22 
 

humans can be unpredictable, normal behavior modeling of the user can be a very 

difficult task.” (Kabiri & Ghorbani, 2005)  In fact, the inability to distinguish between 

legitimate and illegitimate activity is a significant argument against anomaly detection. 

However, one of the first attempts at user behavior profiling, Next-Generation 

Intrusion Detection Expert System (NIDES) (Anderson, Frivold, & Valdes, 1995) was 

very successful, and many different useful approaches to statistical analysis have been 

put forward since then.  “Statistical learning theory (SLT) provides a framework for the 

design of algorithms for classification, prediction, feature selection, clustering, sequential 

decision-making, novelty detection, trend analysis, and diagnosis.  Its techniques are 

already being used in bioinformatics, information retrieval, spam filtering and intrusion 

detection.” (Fox, Kiciman, & Patterson, 2004)    It has been proposed that anomaly 

analysis is the only way to detect heretofore unknown attacks, and may allow detection of 

more complex attacks, such as those that occur over extended periods. (Bace, 2000) 

Of course, anomaly-based IDSs can be prone to false alarms due to the difficulty 

of distinguishing between illegal and merely erroneous behavior, and an inability to deal 

well with changes in user activities.  “Not every anomaly indicates an intrusion.  This is 

especially true…where the system is very dynamic. … As a direct result of this 

uncertainty, anomaly based IDS will produce high [false positive] alarms.” (Kabiri & 

Ghorbani, 2005)  Some say it is also “relatively easy for an adversary to trick the detector 

into accepting attack activity as normal by gradually varying behavior over time.” (Bace, 

2000)  This assumes that an attacker can determine what the IDS uses as an indicator and 

alter the attack to stay “under the radar.”  This research will propose that by monitoring 



23 
 

operating system process behavior and altering the key features to be monitored in near-

real-time, the IDS can avoid spoofing or reverse engineering of this kind. 

2.1.5  Specification-Based 

A specification-based IDS attempts to merge the high detection rate of signature 

based detection with the ability to detect novel attacks of anomaly based detection.  

(Sekar, et al., 2002)  The method basically consists of succinctly identifying the machine 

state then detecting undesired transitions either caused by a specific signature or 

anomalous condition.  Hassan, Mahmoud, and El-Kassas successfully applied this 

technique to MANETs (2006) while Hussein and Zulkernine (2007) built the IDS into 

software with UML to protect individual components.  This is still a relatively new area 

of study, so it may not offer an improvement over either of the other methods combined.  

In fact, (Kabiri & Ghorbani, 2005) report that, “Specification-based approach is only 

good when system specifications and details are known and applying limitations on the 

user is acceptable.” 

2.2  Mobile Ad-hoc Networks 

“A mobile ad-hoc network [MANET] is formed by a group of mobile wireless 

nodes often without the assistance of fixed or existing network infrastructure…MANETs 

[are] much more vulnerable than wired (traditional) networking due to its limited 

physical security, volatile network topologies, power-constrained operations, intrinsic 

requirement of mutual trust among all nodes in underlying protocol design and lack of 

centralized monitoring and management point.” (Huang, et al., 2003) 



24 
 

Intrusion detection in a MANET or other wireless network is exceedingly difficult 

due to changing topology (communication paths) and limitations on computing power.  A 

network-based IDS must be flexible and robust, able to reconfigure itself depending on 

the nodes available and capable of incorporating information from multiple systems.  A 

host-based IDS must be lightweight and able to work in near-real-time since memory and 

processing space are at a premium.  PAIDS was designed with these limitations in mind, 

so every effort was made to reduce the dimensions of the collected feature set data to 

accommodate low memory and processing power. 

2.3  Dimension Reduction 

Intrusion detection systems (IDSs) deal with a “huge amount of data which 

contains irrelevant and redundant features causing slow training and testing process, 

higher resource consumption as well as poor detection rate.” (Chen, et al., 2007)  Thus, it 

is important to decrease the amount of data to be analyzed as much as possible, without 

losing the information needed to classify an intrusion.  “Violating either of these 

constraints would either cause the IDS to run too slowly to detect intrusions in real-time, 

or would cause the network being protected to run at an unacceptably degraded level of 

performance.” (Merkle, et al., 2002)  Clearly, “feature selection/construction is the most 

challenging problem in building [an] IDS, regardless the development approach in use.” 

(Lee, et al., 2000)  Various multivariate statistical techniques have been proposed to solve 

this problem. 



25 
 

2.3.1  Principal Component Analysis 

One method of simplifying the analysis is Principal Component Analysis (PCA), 

which identifies a few uncorrelated linear combinations of a select number of features 

from the full data set to explain the majority of variation.  To calculate these components, 

the normalized eigenvectors of either the covariance or correlation matrix are used to 

rotate the original data until they are arranged along an axis of greatest variation.  

Generally, when the variables are measured in different units, the data are standardized 

and the correlation matrix is used to avoid problems of scale. 

In Multivariate Analysis Methods and Applications, (1984, pp. 9-15) Dillon and 

Goldstein show how, given an n x p matrix X of n observations with p variables, the 

component scores are produced for the correlation matrix through the following steps. 

First, the centroid, μ′ , of each variable is calculated where 1′ is a 1 x n unit row vector.   

𝛍𝛍′ = 𝟏𝟏
𝐧𝐧
𝟏𝟏′𝐗𝐗      (II-1) 

Then, the n x p matrix, Xd

𝐗𝐗𝐝𝐝 = 𝐗𝐗 − 𝟏𝟏𝛍𝛍′     (II-2) 

and the sample variance of each column of centered data can be calculated.  

, centered (mean corrected) matrix can be obtained,  

𝐬𝐬𝟐𝟐 = 𝟏𝟏
𝐧𝐧−𝟏𝟏

𝐱𝐱222222𝐝𝐝
, 22𝐱𝐱𝐝𝐝     (II-3) 

Next, the variances are placed in a diagonal matrix, D, and standardized data is computed 

𝐗𝐗𝐬𝐬 = 𝐗𝐗𝐝𝐝𝐃𝐃−𝟏𝟏/𝟐𝟐     (II-4) 

 Finally, the n x p matrix of component scores can be calculated by post multiplying the 

standardized data with a p x p matrix 𝛄𝛄 of normalized eigenvectors from the original data 

𝐘𝐘 = 𝐗𝐗𝐬𝐬𝛄𝛄     (II-5) 



26 
 

 These scores can then replace the original data, and in our case, be used to 

discriminate between normal and abnormal conditions.  As mentioned previously, the 

data to be analyzed by an IDS can be extensive, so only a reduced number of features, or 

“principal” components, are kept based on a dimensionality assessment as described in 

section 2.3.3. 

2.3.2  Factor Analysis 

Factor analysis (FA) is similar to PCA, but concentrates on identifying 

commonalities between features to determine the essential dimensionality.  It is generally 

used to assess “underlying relationships or dimensions in the data, and the replacement of 

original variables with fewer, new variables.” (Wu & Zhang, 2006)  FA can either be 

exploratory – to uncover hidden relationships, or confirmatory – to verify suspected 

relationships.  This research will use exploratory FA to find characteristics which are 

most representative of a computer’s reaction to an intrusion.   

Dillon and Goldstein (1984, pp. 55-62) state, “while principal components 

analysis is best suited for deriving a small set of linear combinations of the original 

variables that accounts for most of the total variance, common factor-analytic techniques 

can better serve the functions of searching the data for qualitative and quantitative 

distinctions.”  Their basic structure for exploratory FA is shown in Figure 4. 



27 
 

 

Figure 4 – Exploratory Factor Analysis diagram 
 

Expressed as    𝐗𝐗 = 𝚲𝚲𝚲𝚲 + 𝛆𝛆          (II-6) 
 

where X 

There are p unique factors and it is generally assumed that the unique parts 𝚿𝚿 of 

each variable are uncorrelated with each other or with their common parts 𝚽𝚽; that is 

 p-dimensional vector of observed responses 
f q-dimensional vector of unobservable common factors 
ε p-dimensional vector of unobservable unique factors  
Λ p x q matrix of unknown constants called factor loadings 
 

   E(𝛆𝛆𝛆𝛆′) = Cov(𝛆𝛆) = 𝚿𝚿 =

⎝

⎛

Ψ1 0 … 0
0 Ψ2
⋮ ⋱ 0
0 0 Ψp⎠

⎞       (II-7) 

And 
     Cov(𝛜𝛜, 𝚲𝚲′) = 𝟎𝟎        (II-8) 

Which implies the covariance matrix of the response vector X, can be expressed as 

Cov(𝐗𝐗) = Σxx = 𝚲𝚲𝚽𝚽𝚲𝚲2′ + 𝚿𝚿     (II-9) 

where the covariances (correlations) between the common factors are scaled to be 

Cov(𝚲𝚲) = 𝚽𝚽 =

⎝

⎛

1
ϕ21 1
⋮ ⋱

ϕq1 … ϕq,q−1 1⎠

⎞   (II-10) 

f1

f2

X1

X2

X3

X4

λ2

λ1

λ3
λ4
λ5
λ6
λ7

λ8

ε3

ε2

ε4

ε1



28 
 

If the factors are uncorrelated, then Φ = Ι and (2-3) becomes 

Σxx = 𝚲𝚲𝚲𝚲2′ + 𝚿𝚿     (II-11) 

Dillon and Goldstein (1984, p. 62) continue by stating,  

The total number of parameters in need of estimation is 
the number of factor loadings, namely pq. There are  
𝟏𝟏
𝟐𝟐

p(p + 1) separate variances and covariances in Σxx

2.3.3  Dimensionality Assessment 

. ... 
Generally, the requirement for identification is that the 
number of parameters be less than the number of equations, 
so that 𝑝𝑝𝑝𝑝 + 𝑝𝑝 < 𝟏𝟏

𝟐𝟐
p(p + 1) or 𝑝𝑝 < 𝟏𝟏

𝟐𝟐
(p − 1).  Thus, q 

should be fairly small compared to p.  Unfortunately, this 
does not guarantee that a solution will exist.  

It is important to note that in the case of exploratory 
factor analysis, if q > 1 and a solution exists, it is not 
generally unique.  Using (II-11) we see that any orthogonal 
rotation of the factors in the relevant q-space will give a 
new set of factors which will also satisfy the conditions of 
equation (II-11). 

This is important because no matter how we rotate the factor loadings to attempt 

discrimination, they still describe the same key variables to be monitored with the IDS.   

“The size of the feature space is obviously very large.  Once the dimensions of the 

feature space are multiplied by the number of samples in the feature space, the result will 

surely present a very large number.  This is why some researchers either select a small 

sampling time window or reduce the dimensionality of the feature space.” (Kabiri & 

Ghorbani, 2005)  The object of both PCA and FA is to reduce the dimensionality of the 

scores as far as possible while retaining a majority of variation from the original data.   

There are numerous heuristics to accomplish this; one of the most widely used is 

Kaiser’s Criterion in which all components associated with eigenvalues less than one are 



29 
 

discarded.  This ensures that each retained component will have a variance greater than 

any single variable.  Another method, commonly associated with FA, is to add factors 

until the average commonality is higher than a certain percentage.  This research actually 

uses a new heuristic, keeping only those variables that load highly on the first principal 

component, then using eigenvectors that contain 80% of the variance to discriminate. 

There are also various graphical methods to eliminate components, such as the 

maximum secant distance proposed by Robert Johnson (2008) or Cattell’s scree test, 

which is named after the rubble that falls to the bottom of a cliff.  In the scree test, 

eigenvalues are plotted and all components or factors which fall below the “scree line” 

are disregarded.  For instance, in Figure 5, the first two or three components would be 

retained, and the remaining components would be dropped.   

The dividing line between the retained and dropped components is not always 

obvious, and often more components are kept than are necessary.   Johnson proposed an 

automatic determination of the “break point” by using the maximum Euclidean distance 

of the plotted eigenvalues from the log scale secant line, as shown in Figure 6.  

 
Figure 5 – Cattell's Scree Test 

 



30 
 

 
Figure 6 – Max Euclidean Distance of Eigenvalue Curve from Secant Line on Log Scale 

(Johnson, 2008) 
 

Whatever heuristic is used, the dimensions of the original data needed to 

discriminate are reduced from p components to a smaller number k such that there is 

“almost as much information in the k components as there is in the original p variables.” 

(Chen, et al., 2007)  It is proposed that a lightweight IDS can be created that only 

analyzes the reduced data set, but still provides sufficient discrimination between normal 

operations and an intrusion.  

2.4  Anomaly Classification 

2.4.1  Discriminant Analysis 

Discriminant analysis (DA) uses linear or non-linear functions to calculate a 

Mahalanobis distance between multiple groups, thereby creating boundaries in a 

multivariate space.  In two dimensions, “Mahalanobis distances are calculated in units of 

standard deviation from the group mean.  Therefore, the calculated circumscribing ellipse 



31 
 

formed around the training data actually defines the one standard deviation boundary of 

that group.” (Wu & Zhang, 2006)   

This technique has been used by Wong and Lai, however they “use DA to identify 

the important features from the training dataset and then to validate the obtained feature 

set with [support vector machine] (SVM).” (2006)  So, instead of using DA to classify 

their data once important features have been identified, they use it to choose the salient 

features from the original variables.  They also mention that “DA is rarely applied to 

anomaly-based network intrusion detection,” (Wong & Lai, 2006) but this could be 

attributed to a cross-discipline misunderstanding of the most appropriate employment of 

this technique.  This research asserts that PCA and FA are more effective methods of 

determining feature sets, while DA is more efficient at identifying “self” and “non-self.”  

Wu and Zhang also use FA to classify different types of attacks into clusters.  

This “clustering scheme which classifies attacks based on their factor scores’ 

‘abnormality’” (Wu & Zhang, 2006) assumes that a particular type of attack will score 

highly on the same factors.  The same scheme is used to some extent in this research; 

however, PCA is used to highlight features, and a form of quadratic discrimination is 

used to discriminate between normal and abnormal states. 

2.4.2  Quadratic Discrimination and Mahalanobis Distance 

Wu and Zhang (2006) used FA with quadratic discrimination to find anomalies by 

measuring the Mahalanobis distance of outliers from normal operating levels. “Generally 

a test sample is considered as an anomaly if it has abnormal values on one or multiple 

factors.”  A sample population with both abnormal and normal data is needed to train the 



32 
 

classifier.  Each sample point is compared to the mean of the populations transformed by 

the inverse of either the pooled or individual covariance matrices of the samples.  

Quadratic discrimination scores are calculated by   

d� i
Q = − 1

2
ln|Si| −

1
2
�X�0 − X��i�′Si

−1�X�0 − X��i� + lnPi        (II-12) 

Prior probabilities Pi of each population are beneficial but not necessary, and if used, the 

pooled covariance matrix Sp

Sp = 1
N1+N2−2

(𝐗𝐗d1′𝐗𝐗d1 + 𝐗𝐗d2′𝐗𝐗d2)   (II-13) 

Where X

 is calculated by 

d

The calculated score is then used to classify each data point based on which 

population (normal or abnormal) receives the highest score.  Quadratic discrimination 

allows for nonlinear functions and can get quite complicated in higher dimensions.  

However, the concept is quite direct; a linear combination of the original data or 

representative functions is used to find the most likely population to which a given 

sample belongs.  The simple two-dimensional example of the probability of belonging to 

one of two populations in 

 is the sample data centered about its mean as calculated in Equation (II-2).    

Figure 7 shows how this is accomplished.  

 
Figure 7 – Example Mahalanobis Distance 

  



33 
 

The difference between the populations on the original X axis is very small; 

however, when the data is transformed onto a Y axis of linear combinations of the 

original data, there is a marked distinction.  In this case, it is possible to classify the two 

populations with a straight line along the midpoint of the two centroids, which is Fisher’s 

two-group discrimination.  Linear Discriminant Analysis (LDA) developed by Sir Ronald 

A. Fisher, in The Use of Multiple Measurements in Taxonomic Problems (1936) finds a 

“linear function of … measurements [to] maximize the ratio of the difference between the 

specific means to the standard deviation within (groups).”  LDA is accomplished using 

the squared distance between the means of discriminate scores and the pooled covariance 

of the two populations to maximize the distance d between them.  

𝑑𝑑 = �𝐛𝐛′ 𝐗𝐗�𝟏𝟏−𝐛𝐛′ 𝐗𝐗�𝟐𝟐�
𝟐𝟐

𝐛𝐛′ S𝐛𝐛
                   (II-14) 

This quantity is maximized when 

 𝐛𝐛 = S−1(𝐗𝐗�1 − 𝐗𝐗�2)        (II-15) 

Then b is used to transform the original data such that  

 𝐘𝐘�i = b′𝐗𝐗�i                    (II-16) 

This results in a generalized Mahalanobis Distance (MD) (Mahalanobis, 1936) that takes 

into account the correlation between two populations  

 𝐘𝐘�1 − 𝐘𝐘�2 = [S−1(𝐗𝐗�1 − 𝐗𝐗�2)]′(𝐗𝐗�1 − 𝐗𝐗�2)      (II-17) 

   = (𝐗𝐗�1 − 𝐗𝐗�2)′S−1(𝐗𝐗�1 − 𝐗𝐗�2)        (II-18) 

“Basically, MD is a measure of distance between two points in the space defined 

by two or more correlated variables.” (Wong & Lai, 2006)  MD makes the assumption 

that the data are nearly normally distributed and have the same covariance matrix, S.  



34 
 

Like most regression, this technique generally requires more observations than there are 

variables to ensure full rank in the matrix.  If these conditions do not exist, the data can 

be manipulated, adding noise for instance, to generate a more “well behaved” dataset.  

This research will use MD between Principal Component scores calculated from a 

reduced set of system process data to distinguish between normal and abnormal activity. 

The distance is used to group new data into the “closest” population, and the 

standard measurement of effectiveness is a “confusion matrix” built from known data.  

This matrix records whether data points are classified correctly by the discriminator, and 

can be used to calculate an apparent error rate (APER) which is slightly lower than the 

actual error rate (AER).  For two-way discrimination, this looks like Figure 8. 

Predicted Membership

π1 π2

Actual π1 N1C N1I n 1

Membership π2 N2I N2C n 2  
Figure 8 - Confusion Matrix 

 
where  ni  total number of data points in population i  

NiC  number of data points correctly classified in population i 
NiI

APER = (N1I +N2I )
n1+n2

        (II-19) 

  number of data points incorrectly classified in population i 
 
and APER is calculated with  
 

2.4.3  Support Vector Machines 

“The Support Vector Machine (SVM) is one of the most successful classification 

algorithms in the data mining area, but its long training time limits its use.” (Khan, 

Awad, & Thuraisingham, 2007) (emphasis in the original)  “The basic idea in SVM is to 



35 
 

transform the training data into a higher dimensional space and find the optimal 

hyperplane in the space that maximizes the margin between classes.” (Wong & Lai, 

2006)  The simplest SVM model uses the maximal distance between margins as a kernel 

function, which makes it very similar to quadratic discrimination; however, any 

appropriate distance function can be utilized.  For instance, Wong and Lai (2006) used a 

Gaussian radial basis function as the kernel  

 𝑑𝑑 = e−γ‖𝐗𝐗�1−𝐗𝐗�2‖2         (II-20) 

Where the optimal value for parameter γ was determined with empirical test data. 

Khan, Awad, and Thuraisingham attempted to improve on standard SVM by 

clustering large data sets.  The idea is as follows: SVM computes the maximal margin 

separating data points; hence, only those patterns closest to the margin can affect the 

computations of that margin, while other points can be discarded without affecting the 

result.  Those points lying close to the margin are called support vectors, which are then 

used to improve the classification limits.  By using only the clusters of data points closest 

to the margins, the calculations needed for SVM can be dramatically reduced, thus 

decreasing required training time.  A graphical example of this is shown in Figure 9. 



36 
 

 
Figure 9 – Support Vector Machine Classifier (Khan, Awad, & Thuraisingham, 2007) 

 
2.4.4  Decision Trees 

Decision trees are another well-known procedure for classification.  Chen, et al. 

used a C4.5 decision tree algorithm as a classifier between normal and abnormal 

conditions, “The algorithm uses a splitting criterion based on the Information Gain Ratio. 

The idea is to partition the training set in such a way that the information needed to 

classify a given example is reduced as much as possible.” (2007)  A decision (or 

classification) tree works as follows: 

Each internal node in the tree is labeled with a relational 
expression that compares a numeric attribute/feature of the 
object being classified to a constant splitting value.  Each leaf 
is labeled to indicate whether it represents a positive or 
negative instance of the class of interest (e.g., failed 
execution).  An object is classified by traversing the tree from 
the root to a leaf.  At each step of the traversal prior to 
reaching a leaf, the expression at the current node is evaluated 
… A classification tree is constructed algorithmically using a 
training set containing positive and negative instances of the 
class of interest. (Francis, et al., 2004) 
 

Although decision trees can be efficient, they are most useful for clustering 

attacks into distinct types (denial of service, probes, buffer overflows, etc.) to elicit an 

appropriate response.  Also, they can be computationally demanding if partitions are not 



37 
 

effectively established.  Since this research is only concerned with proving the concept of 

identifying an intrusion using process data and not on identifying the type of attack, the 

computationally simple and efficient Mahalanobis distance between populations will be 

employed to classify intrusions instead. 

2.4.5  Genetic Algorithms 

A genetic algorithm (GA) has been used to improve SVM so that it “is not only 

able to select [an] ‘optimal feature set’ but also is able to figure out ‘optimal parameters’ 

for [the] SVM classifier.” (Kim, Nguyen, & Park, 2005)  GA builds a database of rules or 

signatures based on their fitness in classifying training data, which is subsequently used 

by the IDS.  “A GA is essentially a type of search algorithm which is used to solve a wide 

variety of problems. The goal of a GA is to create optimal solutions to problems.  

Potential solutions are encoded as a sequence of bits, characters or numbers. This unit of 

encoding is called a gene, and the encoding sequence is known as a chromosome. The 

GA begins with a set of these chromosomes and an evaluation function that measures the 

fitness of each chromosome. It uses reproduction, such as crossover and mutation to 

create new solutions, which are then evaluated.” (Pillai, Eloff, & Venter, 2004)  Although 

GA is effective, it is computationally expensive, and is not feasible for a lightweight IDS.  



38 
 

 
Figure 10 – Basic Iteration of a Genetic Algorithm (Pillai, et al., 2004) 

 
2.4.6  Neural Networks 

Another computationally expensive method for classification is a neural network.  

A neural network transforms an input vector into a weighted output vector through the 

use of hidden interconnected nodes.  For an IDS, the input vector would be a particular 

feature set, and the output vector would be a classification of “normal” or “abnormal”. 

As usual, there are advantages and disadvantages to this system.  On the plus side, “Data 

in the audit trail may be incomplete, a field is sometimes missing, or the accuracy of the 

measure is low. ... An intruder may try to alter the audit records to hide its illegal activity.  

However, the neural network will be able to cope with this kind of problem.”  (Debar, 

Becker, & Siboni, 1992)  On the other hand, Balducelli, et al. warn, a “neural encoder 

needs to be trained (for many hours) with data collected during more days and weeks.” 

(2007)  This is not practical for a system with low processing power.  “Also, since 



39 
 

recurrent neural networks are retroactive systems, unstable configurations appear,” 

(Debar, Becker, & Siboni, 1992) and, it does not allow for updates in real-time. 

 
Figure 11 – Neural Network (Balducelli, et al.) 

 
2.4.7  Immune System Algorithms 

A different approach to anomaly detection through identification of “self” is to 

simulate an immune system by generating a string of detectors that do not match any of 

the protected data, then “monitor the protected data by comparing them with the 

detectors.  If a detector is ever activated, a change is known to have occurred.” (Forrest, 

et al., 1994)  While this may be useful in protecting static data, it is not applicable to 

detecting intrusion in a highly variable environment, or in detecting attacks that simply 

steal or redirect data without altering it. 

Another approach to using the immune system as a model is “based essentially on 

mathematical models extracted as an abstract of general principles of information 

processing by natural immune systems.” (Tarakanov, 2008)  This method uses training 



40 
 

data to map “antibodies” (rules or signatures) that are then used to classify other 

“molecules” as shown in Figure 12.  In this case, normal conditions can be recognized, 

and anything other than that is classified as abnormal. 

 
Figure 12 – Artificial Immune Intrusion Detection System (Tarakanov, 2008) 

 
2.5  Data Generation 

2.5.1  Repeatable, Sanitized, and Realistic 

Data generation is a major problem in IDS development, specifically “the need 

for a properly labeled set of normal training data from which to construct standard 

statistical measures or train advanced systems.  Statistical analysis requires such a set to 

ascertain what constitutes normal activity and classification based systems that can be 

trained require the set for their training.” (Brugger, et al., 2001)  Some problems may 

arise when training and testing an anomaly detection IDS due to the difficulty in ensuring 

repeatable, sanitized, realistic traffic. (Mell, et al., 2003)   



41 
 

The importance of repeatable data is a basic tenet of scientific experimentation, 

however the other two characteristics warrant some explanation.  Sanitization ensures 

there are no unknown viruses in the data to be analyzed since a “problem with real 

background data is that it may contain attacks about which we know nothing,” (Mell, et 

al., 2003) which can cause problems in assessing “false” detections.  Realistic data is 

important to ensure the IDS is not simply successful for a unique, simplified situation, but 

is universally applicable.  “This problem hasn't been well addressed by the existing 

literature.  The accepted practice seems to be to have a few weeks of training data that is 

thoroughly analyzed and labeled by a human analyst.  Many of the research projects to 

date have used the data provided as part of the 1998 DARPA intrusion detection system 

shootout …While such data sets are essential for comparing different IDS, they are 

highly labor intensive to produce and may not be totally accurate.” (Brugger, et al., 2001)  

Another common frame of reference is the KDD 1999 Cup data (Chen, et al., 2007) 

(Kabiri & Ghorbani, 2005) (Kim, Nguyen, & Park, 2005) (Wong & Lai, 2006) but these 

datasets, though they have faults and benefits, only provide TCP dumps and other 

characteristics of network traffic with no information about the hosts under attack, so 

they are not usable for this research.  

“Many evaluations test IDSs using no background traffic as a reference condition. 

In such experiments, an IDS is set up on a host or network on which there is no activity. 

Then, computer attacks are launched on this host or network to determine whether or not 

the IDS can detect the attacks.  This technique can determine an IDS hit rate but can say 

nothing about false positives.” (Mell, et al., 2003)  This is the approach used for this 



42 
 

research, using a crossover cable connector between two laptops to simulate an Internet 

connection.  In this way, the attack can be controllable and repeatable, even if realism is 

somewhat sacrificed.   

2.5.2  Trustworthiness  

Another major problem with the implementation of any security measure is the 

uncertain “guarantee that the data to be protected are uncorrupted at the time that the 

detectors are generated.” (Forrest, et al., 1994)  Like sanitized test data, it is vital that 

users trust their system is uninfected before they apply an IDS.  This research used stand-

alone computers on a closed network to run experiments and data analysis to avoid the 

possibility of inadvertent contamination.  However, some of the software used was 

downloaded from open Internet sources, so it is possible additional unwanted code was 

included.  To mitigate this threat, older, more benign versions were collected from an 

established source to limit potential exposure. 

  



43 
 

III. Methodology 

3.1  Problem Definition 

3.1.1  Assumptions and Hypotheses 

Most intrusion detection systems attempt to stop attacks before they happen by 

parsing network traffic data and applying code signatures or behavioral rule sets to catch 

malware in the delivery process.  However, if an attack has an unknown pattern it is 

likely to bypass most of the existing IDS software.  Thus, if one is to detect new or 

polymorphic malware, one must be able to distinguish between normal and abnormal 

activity on the attacked system rather than rely on signature matching.   

Many solutions to this problem have been proposed, which have been discussed 

in the previous section, but none of them rely exclusively on operating system parameters 

to discriminate between normal and abnormal.  It is possible this is because many modern 

attacks alter the operating system itself, or because once an operating system shows signs 

of an attack the damage may already be done.  It is the premise of this research that any

Process Anomaly IDS (PAIDS) is intended as a last chance discovery of malware 

at the host level that has managed to avoid detection by a robust multi-layered security 

system.  PAIDS detects backdoor intrusion based solely on operating system performance 

and can adapt to changing conditions.  This is a valuable tool since backdoors are 

notoriously difficult to detect once they are resident and active on computer systems. 

 

attack will have a measurable effect on the operating system in at least one of the 

proposed 18 dimensions, despite attempts by a hacker to deceive the victim, and that 

notification of an attack in progress is better than none at all.   



44 
 

3.1.2  Properties of PAIDS 

“Computer networks have a dynamic nature in a sense that information and data 

within them are continuously changing.   Therefore, detecting an intrusion accurately and 

promptly, the system has to operate in real time…not just to perform the detection in real 

time, but to adapt to the new dynamics in the network.” (Kabiri & Ghorbani, 2005)  

Establishing a “normal” baseline at startup is not sufficient to detect intrusions, because 

once legitimate activity occurs on the system, the “normal” conditions change.  This 

poses problems for an anomaly detection system, because identifying rare legitimate 

activity as abnormal can lead to false positives, and incorporating illegitimate activity 

into a normal model can lead to false negatives. 

For instance, in behavioral pattern matching, if a user only accesses a program 

once a month, this activity may be considered abnormal and identified as an intrusion by 

an IDS.  Difficulty incorporating anomalous legitimate behavior into a “normal” baseline 

model has always been the bane of anomaly detection systems.  Another problem with 

anomaly detection is a hacker can make his/her intrusion appear normal by testing the 

limits of the IDS and attacking at the “boundary” layer to either push the “normal” 

baseline past a vulnerable point, or determine the applicable feature set and avoid it. 

PAIDS avoids the first problem by periodically analyzing data samples, and 

reestablishing a baseline of normality based on existing conditions of legitimate activity.  

Also, since it uses a linear combination of 18 different characteristics of the operating 

processes, it is less vulnerable to false positives generated by rare legitimate activity.  To 

combat the second problem, the use of Principal Component Analysis (PCA) helps 



45 
 

PAIDS avoid deception and reverse engineering by hackers, because classification 

happens in an abstract “feature space” indiscernible to an outside observer.  Finally, 

PAIDS alters the key variables it uses based on the factor loading scores from PCA each 

time it resets the baseline, so it is nearly impossible to determine the “boundary” used for 

classification.  This also helps PAIDS learn what is normal and which processes are most 

important at the time to discriminate between normal and abnormal activity, so the 

algorithm evolves with changing conditions.  

3.2  Tools 

3.2.1  MATLAB® 

A powerful piece of numerical processing software developed by The Mathworks 

Inc., MATLAB has been the “language of technical computing” for decades.  It was 

designed to perform analytical operations on large matrices and it is capable of compiling 

user defined programs as well as offering a wide array of pre-defined functions.  This 

research used version 7.6.0.324 (R2008a) for pre-processing data on the laptop, and for 

some of the post-processing as well.  Most of the post-processing was performed using 

version 7.4.0.287 (R2007a) on the AFIT LAN.  Programs written in MATLAB code for 

this research can be easily compiled into other languages to improve performance in an 

actual IDS. 

3.2.2  TaskInfo 

TaskInfo is shareware developed by Igor M. Arsenin to “combine and improve 

features of Task Manager and System Information tools.  It visually monitors (in text and 

graphical forms) different types of system information in any Windows system in real 



46 
 

time.” (Arsenin, 2008)  This research used version 7.2.0, though a more recent version 

was released on 10 Nov 08.  Some of its professed capabilities are: 

 List of all running processes and threads (including system threads), with 
detailed information about each process: CPU and memory usage, path, all 
opened files and modules (DLLs), command line, environment variables, opened 
connections and more  
 List most of the processes that want to be invisible like worms, keyloggers and 
other spy software  
 Total CPU(s), memory (physical, virtual, cache and swap) usage  
 Detailed information about installed CPU(s) and operating system  
 Data rates on local disks, network server/client, Dial-Up I/O  
 All opened files, drivers and TCP/IP, VPN connections with details 
 (Arsenin, 2008) 
 

The first capability, detailed process information, was the most useful to this research, 

since the primary purpose of using TaskInfo was to record as much raw data on running 

processes as possible.  An example of the visual output from TaskInfo can be found in 

Appendix C – TaskInfo Screenshot.  If it had simply been a GUI, the data would be 

worthless for processing, but fortunately TaskInfo

 Copy all information to clipboard or text file  

 also allows you to:  

 Run/stop processes and shutdown/restart the system  
 Use it from command line  
 Automatically show different low-resource alerts  
 "Free" physical memory on demand (Arsenin, 2008) 

The first capability, copying information to a text file, provided a useable output and the 

third capability, command line use, enabled convenient access to TaskInfo through a 

batch file designed for data collection.  An example of the output file, converted to an 

Excel format, appears in Appendix A – Output Data from TaskInfo in Excel Format. 

3.2.3  Sub7 

Also known as SubSeven, this is one of the best known, most widely distributed 

backdoor programs on the Internet.  “It is mainly used for causing mischief, such as 



47 
 

hiding the computer cursor, changing system settings or loading up pornographic 

websites.  However, it can also be used for more serious criminal applications, such as 

stealing credit card details [or passwords] with a keystroke logger.” (Wikipedia, 2008)  

Other nefarious features include the ability to upload or download files, alter system data, 

or completely destroy the hard drive of the infected computer. 

A backdoor allows an unauthorized user entry to a system by circumventing 

legitimate access controls.  Generally, a backdoor must either be installed prior to initial 

use of the system, or a legitimate user must be tricked into installing it through the use of 

a Trojan.  A Trojan is a malware executable disguised as something the user may be 

interested in or curious about, and is the classic method of socially engineering the spread 

of viruses, worms, backdoors and other malware.  The Sub7 Trojan establishes a server 

on the victim computer that subsequently notifies the intruder when and where it has been 

activated through the use of ICQ, email, or other instant messaging service.  The hacker 

then uses a client program to contact the server, thus providing unauthorized access to the 

victim computer. 

Sub7 has been around since the mid-1990s, so most anti-virus software can now 

detect its existence, though new variations are always being developed and deployed.  It 

is very user friendly, with a straight forward GUI for a multitude of malicious activities, 

shown in Appendix B – SubSeven Command Screens.  This research used version 1.5, 

developed in 1999 by a hacker named mobman, which was downloaded from 

www.hackpr.net/~sub7/downloads.shtml, a mirror for www.sub7.net.   While there is no 

http://en.wikipedia.org/wiki/Cursor_(computers)�
http://en.wikipedia.org/wiki/Pornography�
http://en.wikipedia.org/wiki/Credit_card�
http://en.wikipedia.org/wiki/Keystroke_logging�
http://www.hackpr.net/~sub7/downloads.shtml�
http://www.sub7.net/�


48 
 

guarantee that the code was pristine since it came from the “wild”, it is a very old version 

and less likely to contain other hidden code since it was archived for historical purposes. 

3.3  Experimental Design 

3.3.1   Factors 

To design an experiment properly, the factors to be studied must be identified.  

Obviously, the goal of developing an IDS is to identify an intrusion, so the primary 

variable is whether the system has malware functioning on it or not.  To distinguish the 

effects of malware from the effects of legitimate activity, one must compare these factors 

and their interactions, so the next variable is the level of legitimate activity on the system 

at any given time.  For this research, three levels of activity were used:   

• low – no programs active except those needed to collect data  

• medium – one or two programs running  (i.e. Word and PowerPoint)  

• high – multiple programs running requiring large amounts of memory  

(i.e. Word, PowerPoint, Excel, MATLAB)  

An additional factor of active or inactive connection to the Internet was 

considered; however, for security purposes, this option was not implemented.  Also, to 

ensure statistically significant results were obtained, multiple replications of the 

experiment at each factor level were required. 

3.3.2   Test Runs 

Four formal tests were run to collect data in order to develop and test the 

algorithms used in PAIDS.  The first experimental runs simply recorded data under three 



49 
 

conditions to determine if discrimination was even possible:  low activity without 

malware present, medium activity without malware present, and low activity with 

malware present.  These data sets were collected with no consideration of log-on session 

or warm-up times.  Length of collection varied from 500 seconds to 2000 seconds, and 

samples were at two second intervals due to limitations in code speed. 

Once the concept was proven, DesignExpert® Version 7.1.5 was used to build a 

full factorial experiment with five replications at two levels of malware (present or 

absent) and three levels of activity (low, medium, high) which produced the test plan 

shown in Appendix J – Nov21 Test Plan.  This plan was used to ensure all possible 

interactions between the factors were studied without inducing unintended interactions 

due to the order of runs.  These data sets were collected under a single log on session 

without resetting either system except to delete the malware from the victim computer 

between runs.  Each replication was 1000 seconds long with samples taken at one second 

intervals. 

Additional runs were collected afterwards which considerably simplified the 

interactions, with data containing (activity/malware): 

• Run 1 – ½ low / no ; ½ low / yes 

• Run 2 – ½ low / no ; ½ high / no  

• Run 3 – 1
3�  low / no ; 1

3�  high / no ; 1
3�  high / yes  

Each of these runs was collected on a separate log-on session by recycling power on the 

victim computer with a five minute warm-up period after start-up.  These last runs lasted 

2000 seconds with a one second sample rate, and were used for the majority of 

experimentation. 



50 
 

3.3.3   Data Collection 

The basic methodology remained consistent throughout this experimentation; 

output was produced with TaskInfo for a certain period of time without intrusion or 

legitimate activity, then malware was introduced into the system, legitimate activity was 

started, or both depending on the requirements of the run.  Times were recorded 

throughout the experiments so the resulting datasets could be divided into periods of 

intrusion and levels of legitimate activity. 

Data was collected by calling TaskInfo with a simple batch file  

cd "c:\Program Files\Iarsn\TaskInfo 8.x\"  
TaskInfo pl "c:\Thesis\data\1.txt" 
TaskInfo pl "c:\Thesis\data\2.txt" 
… 
TaskInfo pl "c:\Thesis\data\2000.txt" 

 
Although there is certainly a more elegant way to record data into successively named 

and time-stamped output files, this worked well enough for the research.  The data was 

later read by an import function written specifically for the output file format.  

The import data function (Appendix C – Import Data) initially required 

MATLAB to be running, which limited data collection to once every two seconds due to 

operation of the code.  However, this severely affected the quality of the output, because 

MATLAB uses a huge amount of memory and data is not collected fast enough.  By 

using the batch file to call TaskInfo, data could be collected once per second and did not 

require MATLAB to be running during data collection.  This not only streamlined the 

process, but limited the effect of monitoring software on the operating system.  Any 

actual application of PAIDS will require much more efficient data collection, described 

further in Conclusions and Future Research. 



51 
 

3.4  Implementation 

3.4.1  Hardware Environment  

One of the difficulties in performing cyberwarfare experimentation is harvesting 

malware and analyzing it without adversely affecting your own systems.  In this way it is 

akin to biological warfare, which requires sequestered clean rooms with stringent 

protocols in handling viral and bacteriological weapons.  This necessity is summarized 

well by the European Institute for Computer Antivirus Research (EICAR), “Using real 

viruses for testing in the real world is rather like setting fire to the dustbin in your office 

to see whether the smoke detector is working.” (EICAR, 2006)  The Laboratory for 

Information System Security/Assurance Research and Development (LISSARD) at 

AFIT’s Center for Cyberspace Research provides this environment, where researchers 

can download and test malware and anti-virus programs alike. 

One possibility for testing the effects of malware on systems is to set up virtual 

machines using VMware or simulate networks with OpNet, QualNet, ns2, LARIAT, or a 

similar platform.  This allows the experimenter to employ the same attacks on the same 

system repeatedly without danger of affecting a real operating system.  However, these 

simulators are unable to provide the granularity of host-level responses this research was 

interested in, namely operating characteristics such as CPU and memory usage, number 

of handles, threads, and windows open, and read/write operations.  In order to collect this 

type of information, real systems were required. 

To further protect the LAN and provide a more sterile environment for 

experimentation, this research used standalone laptops.  As a proof of concept, this 



52 
 

research used two laptops which were Intel® Core™ 2 Duo CPU, T7300 @ 2.00GHz 

with 1.99GB RAM running Microsoft Windows XP Professional 2002 with Service Pack 

2.  One laptop was designated the attacker and one the victim, and they were linked 

together with a generic category 5E crossover cable to simulate a network connection.  

To accomplish this, the IP address of the defender was established as 10.1.1.1 and the 

attacker as 10.1.1.2, both on subnet 255.255.255.0.  Although this does not allow for 

background network traffic, which is a limitation described in Section 2.5.1, the data 

collected does not factor in network traffic anyway, so it was considered an acceptable 

loss of fidelity. 

3.4.2  Software Environment  

There are many useful tools to test for computer vulnerabilities and simulate 

malware effects.  One widely used application is Nessus, which scans a system for 

weaknesses in access control, checks for current patch updates, and probes ports with 

known attack profiles.  Metasploit is a well known framework for developing and 

decoding exploitations, and is often used to test IDS software.  EICAR has also 

developed a simple text file to test anti-virus software, which can be found at 

http://eicar.org/anti_virus_test_file.htm, but will not be reproduced here as it causes anti-

virus software to quarantine any file containing the known character string (including 

Word documents).  These are valuable because they allow researchers to simulate effects 

without actually infecting systems with real malware.  Although many of these tools were 

investigated, they were ultimately supplanted by actual malware, which was more 

applicable to this research. 

http://eicar.org/anti_virus_test_file.htm�


53 
 

The search for appropriate malware that predictably and appreciably affects a 

victim system yet is easily removable is a non-trivial task.  Though there are numerous 

blogs, websites, and businesses dedicated to collecting information about malware and 

publishing fixes (Astalavista.com, Milw0rm.com, bleepingcomputer.com, etc.) a 

guaranteed location to find reliably unaltered source code for malware online could not 

be found.  Initially, a popular virus ironically called Antivirus XP 2008 was a prime 

candidate since its effects and procedures for removal are widely documented, but it was 

not possible to find a dependable copy of the actual virus without a danger of infection by 

other malware.  After a considerable amount of investigation, older copies of the popular 

Sub7 program were discovered, which provided an ideal platform to test intrusion while 

limiting the danger of additional attached malware.  Fortunately, the service pack (2) 

loaded on the laptops was susceptible to Sub7, otherwise they would have had to be 

reloaded with an older patch to allow the exploit to work. 

To enhance security, hardware restrictions were applied as described previously, 

and exposure to hacker sites was kept to a minimum while retrieving the necessary 

malware.  In addition, full scans were completed with Symantec Antivirus 2005, Version 

10.0.2.2000, Scan Engine 71.1.0.11 with Virus Definition File 3/29/2007 rev. 32 after 

downloading the malware, as well as between data collection runs, to ensure the laptops 

were as pristine as possible.   

The anti-virus software did pose some problems, however, as the auto-protect 

feature deleted Sub7 files as soon as they were downloaded.  Therefore, the auto-protect 

feature had to be disabled while the malware was being harvested and while tests were 



54 
 

being run.  Also, Symantec is very interested in protecting users from inadvertent lapses 

in security, so the auto-protect feature reengages itself every 30 minutes, which required 

constant vigilance during test runs.  Since the 1.5 version of Sub7 is an older malware 

program, the anti-virus software had no problems finding it.  Also, Sub7 allows the user 

to design their own server with specific capabilities on what programs it can attach to, 

where it “hides” on the victim system, and how it contacts the hacker.  The server 

developed for this research was intentionally designed to be as transparent as possible 

after installation to enable easy removal.  However, the ease of detection by existing anti-

virus software did not necessarily make it easier for PAIDS since PAIDS is looking for 

anomalous activity in system processes rather than for a specific code string like 

Symantec does. 

TaskInfo was practical to collect data for research, but it would be unrealistic to 

rely on text output for a true IDS, because the minimum data collection rate is only once 

every ½ second which is still far too slow to be effective at detecting attacks which can 

happen in milliseconds.  Also, the Heisenberg uncertainty principle applies to analyzing 

an operating system with a program that is working on the same operating system (i.e. 

measurements of the system are affected by the monitoring program.)  Instead, the 

necessary data should be gathered directly from the operating system and analyzed by an 

embedded PAIDS, preferably at the kernel level or lower using primitive hardware 

monitors or software not resident on the operating system being monitored. 



55 
 

3.4.3  Data Acquisition and Formatting 

At the start of the project, it was hoped an existing data set could be analyzed to 

prove the concept of identifying the operation of malware through system anomalies 

rather than the standard method of parsing network traffic.  This would allow comparison 

to previous IDS performance, and simplify the research since a new data set takes time to 

generate.  The DARPA 1998 dataset produced by MIT Lincoln Labs was promising, but 

did not contain the granularity of host level responses required.  Likewise the KDD 1999 

Cup data was unusable, as it merely contained packet data from TCP dumps and not 

operating system measurements.  Thus, like many other IDS research projects, the data 

had to be produced locally. 

Although the Center for Cyberspace Research did not have specific software to 

record system process parameters, it was relatively easy to procure with a quick Internet 

search.  TaskInfo, a shareware program designed by Igor Arsenin, was an ideal platform 

for collecting the desired test data.  Unfortunately, the program is primarily a GUI, and 

text output from the program (Appendix A – Output Data from TaskInfo in Excel 

Format) was not accessible in real time by the preferred analysis software, MATLAB.  

Therefore, to generate time sequenced data, test runs were recorded into an output folder 

as described in Data Collection, and then transferred into a useable array format as 

described below. 

 TaskInfo actually collects a great deal of information, but many of the fields are 

non-numeric.  These fields could be used for classification by assigning numeric values 



56 
 

to the categorical information, but the numerical data already present provided enough 

discrimination so they were dropped.  The remaining data fields are listed in Table 6. 

VARIABLE DESCRIPTION
PID Process Identification Number
% CPU Percentage CPU used by each process
% K CPU Percentage kernel CPU used by each process
Sw/s Number of switches to execution of process/second
InMem KB Physical memory used by process in KB 
Private KB Virtual memory used by process in  KB 
Total KB Total virtual address space used by process in KB
Th Number of threads currently running in process
Handles Number of handles opened by process
Windows Number of windows opened by process
USER Obj Number of user objects opened by process
GDI Obj Number of GDI objects opened by process
Reads Number of read operations issued by process
Read KB Data read by process in KB
Rd Rate B/s Read data rate in bytes/sec
Writes Number of write operations issued by process
Write KB Data written by process in KB
Wr Rate B/s Write data rate in bytes/sec  

Table 6 – Characteristics Collected for each Operating System Process 
 

Converting the output into a numerical array was not a trivial task.  Each line of 

the text file had to be read and decomposed individually, then converted to a single row 

vector representing the various characteristics for every process during each sample.  The 

resulting vector starts with the first characteristic and lists the corresponding values for 

each process, then continues to the next characteristic until all 17 are recorded (Table 9). 

Two other idiosyncrasies of computer process operations compelled further data 

manipulation.  First, the number of processes running at any particular moment changes 

as they are started and stopped, either by recurring automatic activities (disk scans, 

autosaves, etc.) or by normal legitimate activity.  Next, the order processes are put in the 



57 
 

“stack” is different every time a computer is turned on.  Therefore, it was necessary to 

develop a method to standardize the number of processes to be recorded, and the data had 

to be scrubbed to ensure the same processes were being compared in the same way 

between data collection sets.  Otherwise, the correlation matrices produced by PCA and 

FA would be meaningless. 

The first problem actually has a simple solution because each new process gets 

assigned a process identification (PID) when it is started.  When the PID number gets too 

large, the PIDs cycle back to one, so no two concurrently running processes will ever 

have the same number.  To ensure the same processes are recorded from one sample to 

the next, PAIDS compares the PIDs from the first two samples of collected data and 

retains only the identical PIDs.  These become “static” processes, and the characteristics 

in Table 6 are collected for only these processes.  The number of processes beyond the 

“static” ones is also recorded as an additional characteristic, which is added to the end of 

the row vector for that sample.  For this research, there were generally 52 or 53 static 

processes, and since 18 characteristics are retained for each process, the matrices were 

generally at least 1000 x 936.  In fact, the sample size of 1000 seconds was chosen to 

ensure the matrices were full rank and statistically significant. 

A simple example will show how this works.  Assume the data in Table 7 is the 

first sample taken, while data in Table 8 is the second sample, with only nine 

characteristics recorded for each process.  If one were to look only at the Process 

information, they appear identical, however if the PIDs are compared, it is seen that from 

the first sample to the next, the first instances of cmd.exe and TaskInfo.exe have been 



58 
 

dropped and the next instances have moved up in the stack to replace them.  At the same 

time, new instances of the same processes have been added. 

Process PID % CPU % K CPU Sw/s InMem KB Private KB Total KB Th Handles
alg.exe 2660   0 3,560 1,200 33,196 6 105
Dot1XCfg.exe 2044   40 14,624 9,716 156,808 15 297
wuauclt.exe 2932   0 4,080 2,220 36,852 3 206
EXCEL.EXE 3116 0.72%  91 39,612 20,368 172,308 10 694
cmd.exe 3584   0 1,204 1,448 13,636 1 19
TaskInfo.exe 2812 2.17% 1.44% 179 10,320 7,224 49,952 5 150
cmd.exe 3668   0 1,328 1,448 13,636 1 19
TaskInfo.exe 2808   0 8,008 5,940 46,808 5 95  

Table 7 – Sample 1 Notional Data 
 
Process PID % CPU % K CPU Sw/s InMem KB Private KB Total KB Th Handles
alg.exe 2660   0 3,560 1,200 33,196 6 105
Dot1XCfg.exe 2044   48 14,624 9,716 156,808 15 297
wuauclt.exe 2932   0 4,080 2,220 36,852 3 206
EXCEL.EXE 3116 0.72% 0.72% 135 39,612 20,368 172,308 10 694
cmd.exe 3668   0 1,328 1,448 13,636 1 19
TaskInfo.exe 2808 2.90% 0.72% 766 10,324 7,224 49,952 5 150
cmd.exe 2332   0 1,260 1,448 13,636 1 19
TaskInfo.exe 2368   0 8,808 6,804 46,808 5 97  

Table 8 – Sample 2 Notional Data 
 

It is easy to see that if these two samples had been compared to one another in a 

covariance or correlation matrix, or by any standard of measure for that matter, anomalies 

would most certainly arise, but they would be meaningless.  Thus, for this example, only 

the first four processes would be kept for analysis, although the total number of processes 

running at each moment would be recorded as an additional characteristic.  The data is 

then read in order of columns into a row vector for each sample as shown in Table 9. 

Table 9 – Row Vectors for Sample Notional Data 

#

0 0 0 0.72 0 0 0 0 0 40 0 91 3560 14624 4080 39612 1200 9716 2220 20368 33196 156808 36852 172308 6 15 3 10 105 297 206 694 8

0 0 0 0.72 0 0 0 0 0 48 0 135 3560 14624 4080 39612 1200 9716 2220 20368 33196 156808 36852 172308 6 15 3 10 105 297 206 694 8

Threads Handles% CPU % KCPU Sw/s InMemKB Private KB Total KB



59 
 

This is only a valid procedure assuming the computer has not been infected prior 

to start-up.  If the computer is already infected, then the malware effects will probably be 

incorporated into the initial “normal” baseline and PAIDS will most likely not detect an 

anomalous condition caused by the malware in the future.  However, this is an 

unavoidable weakness in any anomaly detection IDS.   

The second problem, process order, is only applicable to historical data collected 

for this research.  This will not be a problem in the actual PAIDS, because the baseline 

dataset will be reset every time a computer is turned, and the order of the “static” 

processes will not change during that session.  The only time it may be a problem is if a 

process is started before PAIDS makes it “static” assessment, and is dropped afterwards.  

For instance, in the example Excel.exe is regarded as “static”; however, if the user quits 

Excel the same number of processes is still recorded to maintain constant dimensionality, 

thus cmd.exe would be recorded as “static” in the second sample.  In this case, although 

the dimensions of the matrices match, the last process in every subsequent sample will 

change, and the analysis will be meaningless.  

Even after the data is successfully stored in a numerical array, it requires some 

slight modifications to be analyzed using multivariate methods.  Specifically, if a column 

contains no variation, when the correlation matrix is calculated, these columns produce 

infinite values when they are inverted, the matrix becomes singular, and the method fails.  

In any other data set, these columns would be dropped as they obviously don’t affect the 

outcome since they don’t change and cannot contain any anomalous condition.  However, 

in this case, columns that have no variation vary between data sets, so if they were 



60 
 

dropped, comparisons would be made between the wrong characteristics and dimensions 

often would not match.  For instance, the number of write operations in one dataset might 

be compared to the amount of data written in another dataset, which clearly doesn’t make 

sense. 

Instead of dropping columns with no variance, they are replaced with random 

noise.  This has little effect on the analysis, since by its nature the noise does not contain 

significant anomalies, and the method retains all columns so the dimension of the array 

remains constant.  One problem encountered with this technique is in the calculation of 

zero variance.  When MATLAB calculates the standard deviation of a column, a floating 

point error often produces values that are extremely small (on the order of e-17

Appendix F – PCA/Mahalanobis Distance

) instead of 

zero and these columns are not replaced with noise.  Thus, the workaround seen on line 

27 of  was developed to get the results desired.   

At the same time, all columns are normalized to values between 0 and 1 by 

dividing each value by the largest value in the column, so the matrix is not subject to 

scale problems caused by measurements on different orders of magnitude (i.e. number of 

threads open vs. kilobytes of data read.)  When this is complete, the matrix generated is 

normalized, numerical, nonsingular, and positive definite.  Finally, the data is ready for 

multivariate statistical analysis. 

3.5  Statistical Methods 

3.5.1  Factor Analysis  

This research began with the premise that FA would be a better tool to aid in 

discrimination between normal and abnormal because the technique finds a linear 



61 
 

combination of unobservable factors based on commonalities and uniqueness of the data.  

Also, factor rotation could be used to find the most effective axis of discrimination.  

Thus, this technique seems ideal to find anomalies and distinguish between the 

populations.  In practice, several difficulties were encountered.  

First, the data in this research is not very well behaved.  The arrays are sparse, not 

well scaled, contain many variables with no variation, and are very large.  The problems 

and solutions to importation and manipulation have been described in 3.4.3, and most of 

them were developed in response to singularity issues encountered when performing FA.  

For instance, in order to calculate standardized data for a dataset X, the inverse square 

root of the diagonal of the covariance matrix is needed. 

 Cov(𝐗𝐗) =

⎝

⎜
⎛

S11 S12 … S1p

S21 S22
⋮ ⋱

Sp1 Spp⎠

⎟
⎞

         (III-1) 

𝐃𝐃−1
2 =

⎝

⎜
⎛

S11
−1

2 0 … 0

0 S22
−1

2

⋮ ⋱
0 Spp

−1
2⎠

⎟
⎞

      (III-2) 

 
However, when the inverse of this matrix is computed with the original data, the columns 

with zero variance create infinite values and the matrix becomes singular.  Obviously, the 

same problem occurs when the correlation matrix is calculated. 

Once the singularity problems are fixed with random noise, the number of factors 

to be retained must be determined.  This is accomplished with the Principal Factor 

method.  Starting with equation (II-11) we can estimate the correlation matrix R with R* 



62 
 

𝐑𝐑 = 𝚲𝚲𝚲𝚲2′ + 𝚿𝚿      (III-3) 

𝐑𝐑∗ = 𝐡𝐡𝟐𝟐 + 𝚿𝚿      (III-4) 

Then h2

𝚲𝚲 = √𝛌𝛌𝛄𝛄      (III-5) 

 can be calculated by squaring the factor loading matrix 𝚲𝚲 where 

𝛌𝛌 is a diagonal matrix of eigenvalues from the original correlation matrix  

𝛄𝛄 is the matrix of corresponding eigenvectors arranged in columns 

The commonality estimates hi
2

𝐑𝐑∗ =

⎝

⎜
⎛

h1
2 Γ12 … Γ1p

Γ21 h2
2

⋮ ⋱
Γp1 hp

2
⎠

⎟
⎞

       (III-6) 

 

 become the diagonal of R* 

R* grows by iterating until the estimated average commonality ∑ hi
2 p⁄  is greater 

than a specified value.  In this research the value was set at 80%.  Once the number of 

factors, p, has been established, the eigenvalues, 𝛌𝛌, can be resized to a p x p matrix and 

factor scores can be calculated for the remaining data.  

Since R* accounts for all of the factors, and h2

𝚿𝚿 = 𝟏𝟏 − 𝐡𝐡𝟐𝟐      (III-7) 

 accounts for the commonality in 

the factors, if R* is normalized then from (III-4) 

Factor scores are then calculated using, 𝚿𝚿, the estimate of factor uniqueness.  

Various methods have been proposed to calculate this score.   

General Least Squares: 𝚲𝚲 = (𝚲𝚲′𝚿𝚿−𝟏𝟏𝚲𝚲)−𝟏𝟏(𝚲𝚲′𝚿𝚿−𝟏𝟏)𝐗𝐗𝐝𝐝′      (III-8) 

Min Mean Square Error: 𝚲𝚲 = 𝚲𝚲′(𝚲𝚲′𝚲𝚲 + 𝚿𝚿)𝐗𝐗𝐝𝐝′       (III-9) 

General Regression:  𝚲𝚲 = 𝐗𝐗𝐬𝐬′ (𝐑𝐑)−𝟏𝟏𝚲𝚲      (III-10) 



63 
 

In this research, Xd and Xs start with the data to be analyzed then adjusts by the 

mean of the baseline 2.3.1 data as described in section .  In this way, the new data is 

compared against the existing sense of “normality” before incorporating any changes into 

the model.  Also, if known changes do occur, for instance when legitimately opening a 

program, a new baseline can be established, so anomalies will only occur from unknown 

conditions such as an intrusion. 

Once a p x 1 factor score, f, has been obtained, Mahalanobis Distance, MD, is 

calculated for each of n samples using (II-18) with p x p retained eigenvalues, 𝛌𝛌, instead 

of the covariance matrix.  Assuming the average factor score for baseline data is zero  

   𝑴𝑴𝑴𝑴 = 𝚲𝚲′𝛌𝛌−1𝚲𝚲          (III-11) 

The MD vector is then used for discrimination between normal and abnormal. 

All of the above methods for calculating factor scores were tried in this research, 

however, none of them performed as well as Principal Component Analysis.  The reasons 

for this are described further in Results and Analysis. 

3.5.2  Principal Component Analysis 

In PCA, a smaller weighted set of linear combinations that describes most of the 

variation of the original characteristics is calculated to reduce the dimensionality of the 

problem.   In this research, PCA was used in two stages of the problem.  First, it was used 

to select a representative feature set and establish a baseline data set.  Next, it was used to 

compare this baseline to new collected data and calculate a Mahalanobis Distance (MD) 

between Principal Component Scores.  The MD is then used to determine normal or 

abnormal activity. 



64 
 

When PCA is performed, a loading matrix, L, is calculated from the product of 

eigenvectors, 𝛄𝛄, and the square root of the eigenvalues, 𝛌𝛌, from either the correlation or 

covariance matrix of original data  

𝐋𝐋 = 𝛄𝛄√𝛌𝛌      (III-12) 

It is important to note that the absolute values produced are always less than one and that 

covariance and correlation matrices produce different values.  This research used the 

correlation matrix because the characteristics were measured on widely different scales, 

although the resulting matrices were eventually normalized to solve singularity problems. 

Once the loading matrix is calculated, the first principal component (first column) 

is evaluated to determine which characteristics load greater than a certain absolute value; 

this research used an empirically generated value of 0.2 as a cutoff point.  The values for 

only

1. It is a unique method for dimensionality reduction, typically decreasing 
the amount of data to be retained and compared by over two-thirds 

 these characteristics are retained as the new baseline data and future data collection 

is only performed on these characteristics until a new baseline is established.  There is not 

necessarily a mathematical reason this method should work; however, there are four 

reasons it is advantageous: 

 
2. Retaining highly loaded characteristics from only the first component 

provides optimum discrimination between the baseline and future data 
 

3. This method for choosing the feature set is completely opaque to an 
outside observer, and thus highly resistant to reverse engineering  

 
4. The feature set changes every time a baseline is established, further 

reducing a hacker’s chances of reproducing “normal” looking conditions  



65 
 

The choice of using characteristics from only the first principal component was 

also empirically determined.  At first, n components were retained until they explained 

80% of the variance of the p characteristics, such that 

∑ 𝛌𝛌𝐢𝐢𝐧𝐧
𝟏𝟏
𝐩𝐩

= 𝟎𝟎.𝟖𝟖      (III-13) 

Then, all characteristics that loaded higher than 0.2 on every retained component were 

kept.  However, the same characteristics load repeatedly on different components, and the 

number of uniquely loaded characteristics rapidly decreases as the number of retained 

components is increased.  Next, the heuristic of retaining only those eigenvalues greater 

than one was applied (Kaiser’s criterion) but there were still too many retained 

characteristics.  Finally, it was determined that keeping only the first component’s 

characteristics was sufficient to discriminate while providing the minimum number of 

retained values.  In this research, the number of retained characteristics was generally 

about 310-330 out of 936-954 original characteristics. 

For example, Table 10 shows an example loading matrix for the first six principal 

components with 18 characteristics.  These six components would account for 

(8.287+3.682+1.506+0.937+0.928+0.772)/18 = 89.51% of the variance.  In this case, the 

3, 4, 6, 7, 8, 10, 11, 12, 14, 16, 17 and 18 characteristics would all be retained, which is 

only a reduction from 18 to 12 dimensions.  If the 80% rule is used, then the first four 

eigenvalues are kept and we are left with nine characteristics, which is a 50% reduction.  

If Kaiser’s criterion is applied, only the first three components are kept, and the retained 

characteristics are reduced slightly to seven.  This is a significant reduction in 

dimensionality, but it has been found empirically that keeping only the first component, 



66 
 

and in this example only one characteristic, still provides enough discrimination to be 

useful. 

Component 1 2 3 4 5 6

Eigenvalue 8.287 3.682 1.506 0.937 0.928 0.772
Characteristic 

1 -0.15384 -0.07401 0.096476 -0.1563 0.049696 -0.02757
2 0.06142 -0.12557 0.050501 0.169607 0.177942 0.043259
3 -0.0336 -0.17164 0.544852 -0.08679 -0.36458 -0.11488
4 0.091929 0.485113 0.144811 0.179635 -0.08225 0.424709
5 -0.04926 0.086957 -0.04442 0.075297 -0.0772 -0.02613
6 0.071546 0.155932 0.101687 -0.25174 0.246949 0.040774
7 -0.10697 -0.00649 -0.2533 -0.00158 0.047893 0.066287
8 0.185519 -0.02182 -0.70137 0.266576 0.374742 -0.14233
9 0.005743 -0.0604 0.12758 -0.13675 -0.08696 0.105364
10 -0.05692 -0.05561 -0.19612 -0.13258 0.244851 -0.03042
11 0.144862 0.008105 -0.17055 0.365728 0.248483 0.207989
12 -0.17734 -0.07986 -0.24029 0.064084 0.315741 0.120701
13 0.079405 -0.08628 -0.14164 0.094099 0.052438 0.008133
14 0.175093 0.247552 -0.27632 0.106642 0.288483 -0.20954
15 0.039833 0.137801 0.014215 -0.02605 -0.01455 0.179396
16 -0.07113 -0.06733 -0.05017 -0.15586 0.242786 -0.13835
17 -0.21841 -0.21717 -0.27561 -0.14524 -0.02712 -0.14616
18 -0.03333 -0.11565 0.033592 -0.09906 0.044157 0.220843  

Table 10 – Example PCA Load Matrix 
 

After the baseline of “normality” has been established, it must be compared to the 

incoming data.  Again, PCA is employed using the correlation matrix (Appendix F – 

PCA/Mahalanobis Distance) but during this stage only the eigenvalues which contain 

80% of the variance are retained.  As before, various methods of dimensionality 

reduction were tested, and this time the 80% rule provided optimum discrimination.  The 

number of retained components after this stage was typically 20-30, which is a 98% 

reduction in dimensionality from 936-954. 

The loading scores are calculated as shown in Section 2.3.1 where Xs is 

calculated by subtracting the mean of the baseline data from the new data, then 



67 
 

standardizing with the inverse square root of the baseline’s covariance matrix.  As stated 

previously, the eigenvalues used to calculate the loading scores are from the correlation 

matrix.  Finally, the loading scores and retained eigenvectors are used to calculate a 

Mahalanobis distance for each sample as described in the previous section. 

3.5.3  Quadratic Discrimination 

Although it is easy for a human to visualize the effectiveness of PAIDS when the 

Mahalanobis Distance (MD) is plotted, it is useful to generate an actual numerical value 

in terms of percentage true and false positive to compare results against other IDSs.  

Quadratic Discrimination (QD) conveniently provides these values, although it is 

unorthodox to use QD in this case since MD is part of the QD calculation.  However, QD 

was performed simply to prove the success of the PAIDS algorithm.  The QD procedure 

and measurement of effectiveness is described in Section 2.4.2. 

To perform QD with this data, the MD values from the initial baseline are stored 

as “normal” data, and they are compared to the incoming data in a two-way classifier.  If 

PAIDS were to be implemented in a real system, the first time legitimate activity 

occurred the system could be prompted to record additional “normal” data to be used in a 

three-way classifier.  In this way, the system could learn how to measure “self” and 

“other”.  Anything that registers in the three-way classifier as something different than 

the initial baseline or designated legitimate activity would be labeled an intrusion.  

 



68 
 

IV. Results and Analysis 

This research consisted of four main experiments, presented here in chronological 

order.  As the research progressed, the analysis techniques changed slightly to pursue 

avenues that seemed to hold promise for anomaly discrimination.  The progression is 

depicted as clearly as possible to show how assumptions and results evolved throughout 

the process. 

4.1  Oct 31 Test – Component Scores 

At first, it was hoped a simple plot of the first principal component scores would 

offer some distinction between normal and abnormal populations.  At the very least, it 

provided some insight into the complexity of the problem, and some potential areas of 

improvement for future experiments.  In this first test, MATLAB was still being used to 

run code, so the sample rate was limited to once every two seconds.  Also, Internet 

connection was still being considered as a possible variable.  Finally, the “intrusion” 

mechanism in this case was the EICAR standard anti-virus test file and the quirks of 

working with (and against) Symantec were still being worked out. 

Three runs were completed in this first experiment:  normal activity with no 

internet connection, normal activity with internet connection, and abnormal activity with 

internet connection.  The timelines for each run are shown in Table 11 through Table 13.  

Sample number was used to maintain consistency between experiments and charts, 

because in this case each sample was two seconds apart while the interval in later 

experiments was one second. 



69 
 

Sample Number Activity on victim computer 

1 – 50 Opened Explorer without Internet connection  
Opened c:\ prompt, “pinged” from attacking computer 

51-450 No activity, Explorer window still open 
451-500 Opened Word, saved file, closed Word 
501- 550 Opened Excel, saved file, closed Excel 
650-700 Opened c:\ prompt, “pinged” from attacking computer 
750-900 Opened Word, Excel, Outlook, and PowerPoint 

Copied/Pasted between programs  
Opened old files, saved and closed new files 

901-1000 No activity, no windows open 
Table 11 – Oct 31 Run1 (normalnoactivity) Timeline 

 
Sample Number Activity on victim computer 

1 – 1000 Opened Explorer with Internet connection  
Opened two tabs, searched for possible virus to use 
during next phase of experiment 

Table 12 – Oct 31 Run2 (normalinternet) Timeline 
 

Sample Number Activity on victim computer 

1 – 59 Downloaded EICAR test file from 
eicar.org/anti_virus_test_file.htm  
Symantec auto-protect instantly deleted file 
Disabled Symantec auto-protect 

60-69 Ran EICAR test file 
110-119 Ran EICAR test file 
160- 169 Ran EICAR test file 
210-219 Ran EICAR test file with Symantec enabled 
260-269 Ran EICAR test file with Symantec enabled 
310-319 Ran EICAR test file with Symantec enabled 
360-369 Ran EICAR test file 
410-419 Ran EICAR test file 
460- 469 Ran EICAR test file 
510 Ran Symantec quick scan 
560 Enabled Symantec auto-protect 
700 Found and quarantined EICAR files 
910 Deleted EICAR files 

Table 13 – Oct 31 Run3 (abnormalinternet) Timeline 
 



70 
 

The first run, labeled “no activity”, actually had a significant amount of activity, 

which was not taken into account during the analysis.  For this reason, the dataset was 

deemed unusable, but it highlighted the importance of recording an exact account of the 

activity during the data collection process.  The second run, labeled “normalinternet”, 

was taken while connected to the Internet, so there is no guarantee the data is malware 

free except that no files were downloaded and it was run on a military connection which 

is presumed to be (relatively) secure.  Also, the first time malware was intentionally 

introduced from the Internet it was caught and deleted instantly by Symantec auto-

protect.  Workarounds, described in Section 3.4.2, were used to avoid Symantec 

throughout the rest of the research.  

After the data from these runs was cleaned and processed, the principal 

components scores from the first two components were plotted to see if any 

discrimination could be made.  Figure 13 shows there was indeed a distinction, 

particularly between the second and third runs, though there was still some overlap.   

 
Figure 13 – Oct 31 First Two Principal Component Scores  

-35

-25

-15

-5

5

15

-80 -60 -40 -20 0 20

Se
co

nd
 P

ri
nc

ip
al

 C
om

po
ne

nt

First Principal Component

31 October Test - Principal Component Scores 

normalnoactivity

normalinternet

abnormalinternet



71 
 

The fact that discrimination was apparent in two dimensions was promising, since 

it was known the final discrimination would be accomplished in at least 17 dimensions.  

It also demonstrated the strength of the first principal component for discrimination, 

which was used later to facilitate dimension reduction.  This technique definitely did not 

give the clarity required for an IDS; plus, the analysis was faulty since “static” processes 

had not been identified yet, and columns with zero variance were dropped instead of 

being replaced with noise.  It was also assessed that a more significant “attack” was 

needed to get a measurable result.   

Interestingly, when this data was analyzed with the PCA-PCA-MD technique 

developed later, the presence of the EICAR file was readily distinguishable (Figure 14).  

However, the difference between the operation of this file and normal activity would not 

be significant enough to register in quadratic discrimination.   

 
Figure 14 – Oct 31 Evaluated with PCA-PCA-MD Technique 

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7
x 10

4

Samples (2 second intervals)

M
ah

al
an

ob
is

 D
is

ta
nc

e

Oct31 key249variables PCA - 20 PCs
clean last 30secs norminternet vs. abnorminternet

EICAR test file
without Symantec 
running

Symantec
engaged

30 samples
of "normal"
baseline data



72 
 

4.2  Nov 7 Test – Component Scores vs. Time 

Five runs were accomplished during this test, with 1000 samples of data at a rate 

of once per second for each run.  The object of this test was to work out the data 

problems identified in the first test, so no malware was introduced and no activity was 

conducted during any run.  Many of the data manipulation techniques used throughout 

the research were developed as a result of this test. 

The biggest problem with the data collected during these first tests was that 

columns with zero variance caused the PCA and FA techniques to fail.  These columns 

were initially thrown out, however this caused dimensionality discrepancies (comparing 

apples to oranges) so the technique of replacing the columns with random noise was 

developed as described in Section 3.4.3.  Also, the data was badly scaled, since some 

measurements were taken in kilobytes while others were a simple count of “number of 

threads open by process” so the entire matrix was normalized from 0 to 1 to correct this 

problem.  These techniques were continued throughout the research. 

Also, the monitoring code required MATLAB to be open, which greatly affected 

the operating system, memory used, and the speed at which measurements were taken.  

Changes were made so a batch file could call TaskInfo directly, but data collection still 

required the operation of these two programs (TaskInfo and a command prompt).   

However, using the batch file, the data could be collected twice as fast with less impact 

on the operating system, so this method was used for the rest of the tests. 

Finally, the highly variable nature of the data became readily apparent during the 

first two tests.  Both between runs and during a single run, system processes were added 



73 
 

and dropped when programs were open and closed and when automatic operating system 

processes (disk scans, etc.) started and stopped.  This not only caused problems 

comparing data sets, but also with the statistical methods used due to singularity 

problems.  This problem was corrected by identifying “static” processes as described in 

Section 3.4.3 and only recording data for these processes.   

However, the first run in this test showed the “static” process technique may also 

induce problems.  For instance, a DOSscan was occurring during the first eight seconds 

of this run, so it was identified as a “static” process, but when the scan was complete it 

dropped out of the stack and the algorithm was stuck recording too many processes.  This 

caused dimension problems and gave the system a false sense of self.  This discrepancy 

can be seen in the wildly different scores for run 1 plotted in Figure 15.    

 
Figure 15 – Nov 7 First Two Principal Scores All Runs 

 
Based on these observations, it is imperative that the total number of processes 

recorded by PAIDS is established at startup after all beginning transient processes have 

closed and before

-15

-10

-5

0

5

10

15

20

25

-15 -5 5 15 25 35 45

2n
d 

Co
m

po
ne

nt
 S

co
re

s

1st Component Scores

1st - 5th runs Nov 7 "No" Activity

1

2

3

4

5

 recurring automatic processes begin.  This technique also assumes the 



74 
 

system is not infected at startup since any intrusion at that point would be incorporated 

into the sense of self. 

  Another conclusion from this test was that a plot of PCA scores over time would 

not be useful.  It was hoped some type of variable control limit could be placed on the 

values of these scores which would be exceeded under anomalous conditions such as an 

intrusion.  Instead, as can be seen in the figures below, it was found that this data by itself 

was too highly variable to be of value.  Thus, the idea of calculating a Mahalanobis 

Distance between component scores was introduced.   

 
Figure 16 – Nov 7 Run1 First Three PCA Scores vs. Time 

 

 
Figure 17 – Nov 7 Run2 First Three PCA Scores vs. Time 

-20

-10

0

10

20

30

40

50

60

70

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

32
6

33
9

35
2

36
5

37
8

39
1

40
4

41
7

43
0

44
3

45
6

46
9

48
2

49
5

50
8

52
1

53
4

54
7

56
0

57
3

58
6

59
9

61
2

62
5

63
8

65
1

66
4

67
7

69
0

70
3

71
6

72
9

74
2

75
5

76
8

78
1

79
4

80
7

82
0

83
3

84
6

85
9

87
2

88
5

89
8

91
1

92
4

93
7

95
0

96
3

97
6

98
9

Component Scores vs Time

1st component 2nd component scores 3rd component scores

-120

-100

-80

-60

-40

-20

0

20

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

32
6

33
9

35
2

36
5

37
8

39
1

40
4

41
7

43
0

44
3

45
6

46
9

48
2

49
5

50
8

52
1

53
4

54
7

56
0

57
3

58
6

59
9

61
2

62
5

63
8

65
1

66
4

67
7

69
0

70
3

71
6

72
9

74
2

75
5

76
8

78
1

79
4

80
7

82
0

83
3

84
6

85
9

87
2

88
5

89
8

91
1

92
4

93
7

95
0

96
3

97
6

98
9

Component Scores vs Time

1st component scores 2nd component scores 3rd component scores



75 
 

 
Figure 18 – Nov 7 Run3 First Three PCA Scores vs. Time 

 

 
Figure 19 – Nov 7 Run4 First Three PCA Scores vs. Time 

 

 
Figure 20 – Nov 7 Run5 First Three PCA Scores vs. Time 

-20

-10

0

10

20

30

40

50

60

70

80

90

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

32
6

33
9

35
2

36
5

37
8

39
1

40
4

41
7

43
0

44
3

45
6

46
9

48
2

49
5

50
8

52
1

53
4

54
7

56
0

57
3

58
6

59
9

61
2

62
5

63
8

65
1

66
4

67
7

69
0

70
3

71
6

72
9

74
2

75
5

76
8

78
1

79
4

80
7

82
0

83
3

84
6

85
9

87
2

88
5

89
8

91
1

92
4

93
7

95
0

96
3

97
6

98
9

Component Scores vs Time

1st component scores 2nd component scores 3rd component scores

-20

0

20

40

60

80

100

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

32
6

33
9

35
2

36
5

37
8

39
1

40
4

41
7

43
0

44
3

45
6

46
9

48
2

49
5

50
8

52
1

53
4

54
7

56
0

57
3

58
6

59
9

61
2

62
5

63
8

65
1

66
4

67
7

69
0

70
3

71
6

72
9

74
2

75
5

76
8

78
1

79
4

80
7

82
0

83
3

84
6

85
9

87
2

88
5

89
8

91
1

92
4

93
7

95
0

96
3

97
6

98
9

Component Scores vs Time

1st component scores 2nd component scores 3rd component scores

-15

-10

-5

0

5

10

15

20

25

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

32
6

33
9

35
2

36
5

37
8

39
1

40
4

41
7

43
0

44
3

45
6

46
9

48
2

49
5

50
8

52
1

53
4

54
7

56
0

57
3

58
6

59
9

61
2

62
5

63
8

65
1

66
4

67
7

69
0

70
3

71
6

72
9

74
2

75
5

76
8

78
1

79
4

80
7

82
0

83
3

84
6

85
9

87
2

88
5

89
8

91
1

92
4

93
7

95
0

96
3

97
6

98
9

Component Scores vs Time

1st component scores 2nd component scores 3rd component scores



76 
 

4.3  Nov 21 Test – Principal Component Analysis-Mahalanobis Distance 

(PCA-MD) 

Once the data problems had been resolved, a new, more realistic, attack had to be 

found.  Various hacker websites were visited, as described in Section 3.4.2, before the 

backdoor Trojan, Sub7, was identified as an ideal candidate.  This exploitation was used 

throughout the rest of the research.  During this test, the design of experiment presented 

in Appendix J – Nov21 Test Plan was used during a single log-on session.  It was hoped 

that using a single log-on would decrease the chances of problems caused by a different 

number or order of “static” processes.   

Even with the precautions taken, the first 11 runs had an extra process running, 

which had to be deleted from the historical record before analysis could be performed.  

This system process is described at www.ProcessLibrary.com (Uniblue, 2008): 

ccapp Stands for Common Client Application and is the executable responsible for 

checking emails and auto-protect facilities as part of the Norton Antivirus suite.  

The ccapp.exe file is used as the Norton Antivirus’ real-time scanner executing 

behind the scenes, scanning your system for Trojan Horses, viruses, and worms. 

So even after auto-protect had been disabled, there was still a process running in the 

background attempting to detect malware.  This demonstrated how convoluted 

background processes can be and the importance that “static” processes established at 

start-up are not actually transient. 

http://www.processlibrary.com/�


77 
 

Once the data had been scrubbed to ensure the same processes were being 

compared against each other, it was necessary to determine which sets of data to 

compare.  First, some terms were required.   

• Clean – data with no activity and no malware 

• Dirty – data with activity 

• Infected – data with malware 

To prove the Mahalanobis Distance technique was valid, a first attempt was made 

to compare a run to itself, which should in theory result in a very low MD, though not 

necessarily zero.  Therefore, Run7 (clean) was used with the entire dataset as the 

“baseline” with the results presented in Figure 21.  This showed that, while highly 

variable, the MD was relatively low for a dataset compared to itself as expected. 

However, there was an unusual result when compared to another clean dataset (Run10) 

using the entirety of Run7 as a baseline.  Since both these runs were at level one activity 

with no malware, it was expected that a similarly low MD would result, however, Figure 

22 shows this was not the case (notice the scale of the MD on the Y axis).  



78 
 

 
Figure 21 – Nov 21 Run7 (clean) All vs. Run7 (clean) All 

 

 
Figure 22 – Nov 21 Run7 (clean) All vs. Run10 (clean) All 

 

0 100 200 300 400 500 600 700 800 900 1000
200

300

400

500

600

700

800

900

1000

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 Run7 vs Run7 all

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14
x 10

8

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 Run7 vs. Run10 all



79 
 

These results suggest that the dataset used as a baseline makes a great deal of 

difference both in terms of when the window for data collection occurs and how long the 

window lasts.  The first problem is caused by changing conditions of the operating 

system, and can be solved with a rolling window, periodic updates, or event driven 

updates to the baseline.  The latter issue affects the memory and processing capacity 

required, since it takes more of both to analyze a longer window of collected data without 

improving the result.  It also suggests the introduction of noise into the data may have an 

effect, and that the number of variables to be analyzed might need to be reduced. 

At this point, it was possible to distinguish one dataset from another, but this did 

little to discriminate normal from abnormal let alone legitimate from illegitimate activity.  

For instance, when Run7 (clean) was concatenated with Run13 (dirty) and Run12 

(infected) to simulate continuous data, the result was inconclusive (Figure 23).  It was 

obvious there was a difference between the baseline data (first 1000 seconds) and other 

data, but there was still no distinction between dirty (second 1000 seconds) and infected 

data (last 1000 seconds).   



80 
 

 
Figure 23 – Nov 21 Run7 vs. Run7(clean), Run13(dirty), and Run12(infected) 

 
In fact, after some investigation, it was determined that it was only possible to 

distinguish between the window of data used as the baseline and any other data.  It was 

clear from these results that distinctions could

Figure 22

 be made between datasets; however, the 

time and data required to make such discriminations was considerable.  For instance, 

MATLAB took 56.7 seconds to generate  and 107.9 seconds for Figure 23, 

while a 1000x936 matrix (1000 seconds of 936 variables) takes up approximately 5,000 

KB of memory.  Obviously, if PAIDS was to be an effective deterrent it would have to 

react faster to an intrusion, and if it were to be used on a MANET it would need to use 

less memory.  Thus, less data had to be collected and analyzed while still providing the 

same or better level of discrimination in less time.  During the course of the next test, 

alterations to the algorithm and observations of the resulting data provided significant 

improvements in memory load, processing speed, and accuracy of discrimination. 

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14
x 10

8

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 Run7 vs. Run7, Run13, and Run12 all



81 
 

4.4  Nov 25 Test – PCA-PCA-MD   

The next test was conducted to reduce the complexity of the data and to refine the 

data collection process so a more efficient algorithm could be designed.  It concentrated 

on finding the key variables needed to discriminate between datasets and fine tuning the 

dimension and sample reduction techniques necessary to considerably decrease the 

amount of data required.  There were only three runs during this test, and the victim 

computer was shutdown and cleaned between each run with a five minute “warm-up” 

period after being turned on.  Sample numbers were determined by analysis of the 

resulting data files which showed when programs were opened and closed. 

Sample Number Activity on victim computer 

1 – 999 No activity, except for batch file 
1000 - 2000 Introduced Sub7 v1.5 into system from thumb drive 

Table 14 – Nov 25 Run1 (clean/infected) Timeline 
 

Sample Number Activity on victim computer 

1 – 1002 No activity, except for batch file 
1003 – 2000 Opened programs and data as follows: 
      1015      Notepad – looked at .txt files 
      1146      MATLAB – imported data  
      1299      Excel – opened file with links to other files 
      1448      Word – opened file with embedded macros 
      1599      Powerpoint – opened file and manipulated it 
      1748      Explorer – opened without Internet connection 
      1897      TaskInfo – opened and took screenshot 

Table 15 – Nov 25 Run2 (clean/dirty) Timeline 
 

Sample Number Activity on victim computer 

1 – 666 No activity, except for batch file 
667 – 1334 Opened programs and data as in Run2 
1335 (1405) – 2000 Introduced Sub7 v1.5 into system from thumb drive 

Table 16 – Nov 25 Run3 (clean/dirty/infected) Timeline 



82 
 

As with the Nov 21 test, Symantec AntiVirus auto-protect had to be disabled 

throughout the test, but in this case the data did not need to be massaged afterwards 

because the “static” processes were the same.  Programs once started were not stopped, 

and when the backdoor was opened, all of the various activities available were conducted 

to simulate an intrusion.  During the last run, the computer was running so slowly from 

all the open programs that effects from the intrusion did not appear for nearly half a 

minute on the victim computer after they were initiated on the attacking computer (thus 

the sample number in parentheses) and eventually caused runtime errors which shutdown 

MATLAB and Excel. 

While performing analysis of this data, singularity problems appeared again, and 

it was at this point that the floating point error was discovered, requiring the use of <10-11

Appendix E – Principal Component Analysis Baseline

 

instead of =0 (  – Line 20) as well 

as the need to reintroduce noise during the PCA process in addition to the import process.  

This was because smaller sample sizes were taken from the original data, and some 

columns once again contained all zeros, where in the larger data set there was at least one 

number to prevent the introduction of noise.  In an actual application of PAIDS, the noise 

will only need to be introduced one time after the sample is taken.   

In an attempt to reduce the amount of data recorded, an effort was made to find 

the key variables to discrimination.  Initially, all eigenvectors with eigenvalues less than 

one were thrown out (Kaiser’s Criterion) but in some cases only a single component 

remained, which did not provide any discrimination (Figure 24).  A graphical method to 

determine the cutoff point such as Johnson’s secant method is possible, but it takes much 



83 
 

less time and effort to retain eigenvalues that explain a certain percentage of the variance.  

This research used 80% with good results (Figure 25); however, future work might 

attempt a graphical solution or investigate different percentages to see if they provide 

better discrimination.  Also, using the MATLAB command COV on standardized data 

instead of CORR on centered data (Appendix F – PCA/Mahalanobis Distance – Line 55) 

provided an order of magnitude decrease in processing time. 

 
Figure 24 – Nov 25 Run1 (clean) vs. Run1 (clean/infected) - Kaiser’s Criterion 

 
Figure 25 – Nov 25 Run1 (clean) vs. Run1 (clean/infected) - 80% variance 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25run1 Cleaned vs. All - 1 eigenvalue

 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
150

200

250

300

350

400

450

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25run1 Cleaned vs. All - 299 eigenvalues

 

 



84 
 

A major breakthrough was made in data reduction when it was discovered that 

variables which loaded heaviest on the first principal component of the baseline data 

were sufficient to discriminate between subsequent datasets.  Originally, the factor 

loading matrix was observed to determine if a smaller common set of variables were 

important to intrusion detection.  Details of the development of this technique are found 

in Section 3.5.2 and results are described in Section 4.3.  The most important result was 

using these factor loadings to select key variables to collect and analyze. 

 
Figure 26 – Nov 25 Run1 (clean) vs. Run1 (clean/infected) - Key Variables 

 
Now, instead of comparing all 900+ variables, PCA is performed on the baseline 

dataset, and only those variables which load higher than the absolute value of 0.2 on the 

first principal component are retained.  This eliminates the noisy and low variability data, 

then PAIDS only collects data on the reduced set.  When PCA is performed again on the 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2000

4000

6000

8000

10000

12000

14000

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 431key Run1 first 20s vs. Run1 all - 13 PCs



85 
 

reduced data set, the number of retained components is less than 30, which is more than a 

97% reduction in dimensionality, and the discrimination is much better (Figure 26). 

Another major effort to reduce the amount of data was in determining an optimum 

period of time data that should be recorded (the sample window) to establish the baseline.  

Initially when developing the model, the entire period of known “normal” data was used 

as the baseline, but this was simply to prove the concept of distinction.  During this test, 

three minute, two minute, one minute, 30 second, 20 second and 10 second intervals from 

the start of known periods of inactivity were used as a baseline.  The procedure was: 

• Run Appendix E – Principal Component Analysis Baseline on the first 

period of data taken during the run (i.e. first 10, 20, or 30 seconds, etc.) 

• Reduce the database to the key variables identified in the baseline process 

• Use these reduced datasets in Appendix F – PCA/Mahalanobis Distance to 

produce final results 

Discrimination was not as good as later tests which used rolling and periodic windows, 

but it indicated the length of the baseline window was significant, and suggested variable 

lengths might be beneficial.  Recurrence of data collection was addressed in another test.  

Results varied slightly for all categories (processing time, components retained, 

etc.) but typical results of these comparisons are depicted on the following pages.  Based 

on these results, it was determined 20 seconds was the optimum amount of data to retain 

as a baseline in terms of memory used, time needed to record and analyze data, and most 

importantly accuracy in discrimination. 



86 
 

Sample Length

Baseline 
Processing 
Time (Sec)

Key 
Variables 
Retained

Discrimination 
Processing 
Time (Sec)

Principal 
Components 
Retained

Baseline 
Database 
Size (KB)

10 sec 3.875830 572 0.979272 7 30
20 sec 3.826673 427 0.513489 13 41
30 sec 3.724152 320 0.337810 18 45
60 sec 3.419391 202 0.216404 25 52
120 sec 3.421965 114 0.127510 14 39
180 sec 3.117276 104 0.092684 4 35

 
Figure 27 – Nov25 Run1 (clean/infected) PCA-PCA-MD Comparisons 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 - 572key first 10s Run1 vs. Run1 all - 7 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2000

4000

6000

8000

10000

12000

14000

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 427key Run1 first 20s vs. Run1 all - 13 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 320key first 30s Run1 vs. Run1 all - 18 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6
x 10

4

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 - 202key first 60s Run1 vs. Run1 all - 25 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 114key first 120s Run1 vs. Run1 all - 14 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1000

2000

3000

4000

5000

6000

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 - 104key first 180s Run1 vs. Run1 all - 4 PCs



87 
 

Sample Length

Baseline 
Processing 
Time (Sec)

Key 
Variables 
Retained

Discrimination 
Processing 
Time (Sec)

Principal 
Components 
Retained

Baseline 
Database 
Size (KB)

10 sec 3.904401 585 1.048655 7 31
20 sec 3.825657 410 0.477722 13 41
30 sec 3.732138 326 0.347049 18 45
60 sec 3.361985 244 0.230664 19 47
120 sec 3.424280 156 0.118346 4 35
180 sec 3.138091 149 0.109284 3 34  

 
Figure 28 – Nov25 Run2 (clean/dirty) PCA-PCA-MD Comparisons 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1000

2000

3000

4000

5000

6000

7000

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 585key first 10s Run2 vs. Run2 all - 7 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12
x 10

4

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 410key first 20s Run2 vs. Run2 all - 13 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7
x 10

4

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 326key first 30s Run2 vs. Run2 all - 18 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 244key first 60s Run2 vs. Run2 all - 19 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500

3000

3500

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 156key first 120s Run2 vs. Run2 all - 4 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
100

200

300

400

500

600

700

800

900

1000

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 149key Run2 first 180s vs. Run2 all - 3 PCs



88 
 

Sample Length

Baseline 
Processing 
Time (Sec)

Key 
Variables 
Retained

Discrimination 
Processing 
Time (Sec)

Principal 
Components 
Retained

Baseline 
Database 
Size (KB)

10 sec 3.945497 585 1.033670 7 28
20 sec 3.837077 431 0.525982 13 39
30 sec 3.764498 354 0.395639 19 46
60 sec 3.324500 209 0.228809 23 49
120 sec 3.522625 131 0.116491 9 35
180 sec 3.172045 117 0.099162 4 34  

 
Figure 29 – Nov25 Run3 (clean/dirty/infected) PCA-PCA-MD Comparisons 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3
x 10

4

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 585key first 10s Run3 vs. Run3 all - 7 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3
x 10

5

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 431key first 20s Run3 vs. Run3 all - 13 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9
x 10

4

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 354key fisrt 30s Run3 vs. Run3 all - 19 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9
x 10

5

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 209key first 60s Run3 vs. Run3 all - 23 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 131key first 120s Run3 vs. Run3 all - 9 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12
x 10

4

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov25 117key first 180s Run3 vs. Run3 all - 4 PCs



89 
 

The last decision to be made was how often the baseline should be updated.  

Some possibilities were:   

• Session-driven – a single baseline established at start-up 

• Time-driven – once every two minutes (or other periodic interval) 

• Event-driven – based on user input when MD change exceeds limits 

• Continuous – latest sample replaces earliest after being compared to 

existing baseline for anomaly (rolling window) 

To decide the optimum update rate, comparisons were made between different 

baseline lengths and times to see how they affected discrimination.  In other words, for a 

given dataset of clean, dirty, and infected data, the baseline was established at different 

times (at start-up, after a certain period of time, or immediately before and after transition 

to an altered state) and the discrimination between data was observed.  The data from the 

Nov 21 test was primarily used for these comparisons. 

Before embarking on this experiment, some assumptions had to be checked.  If 

only the first 20 seconds of Run7 are used as the baseline, it was expected that the first 20 

seconds would have a lower MD (since they are in effect being compared to themselves) 

and the remaining time would either be close to the same or slowly increasing as 

conditions changed.  The results are presented in Figure 30, and though the low MD 

values last for 21 seconds instead of 20 as expected, the increase in MD is sharp and 

much greater than expected. 



90 
 

 
Figure 30 – Nov 21 Run7 First 20s vs. Run7 (clean) All 

 
These intuitive results are far from typical.  When the same experiment was 

completed on the other “clean” datasets, similar results were expected; however, the MD 

actually starts high and gradually decreases to near zero (Figure 31).  Interestingly, when 

the baseline window was increased in an attempt to “even” the MD out, the change only 

exacerbated the spikes in the data and did nothing to decrease the initial value.  In fact, 

none of the runs achieved the expected form, but runs 7 and 15 were considered most 

useable since they didn’t contain large spikes.  Clearly, the window size made a 

difference, but it was not entirely clear why the MD decreased towards zero instead of the 

other way around.  Despite these counterintuitive results and the occasional spikes in 

MD, the results showed a dramatic difference between clean, dirty and infected data, 

which boded well for the next step:  discrimination. 

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18
x 10

4

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 376key Run7 first 20s vs. Run7 all - 13 PCs



91 
 

 
Figure 31 – Nov 21 Clean Runs First 20s vs. All Data 

 

 
Figure 32 – Nov21 Clean Runs with Various Baseline Window Lengths 

 

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

10000

12000

14000

16000

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 404key Run10 first 20s vs. Run10 all - 13 PCs

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 419key Run15 first 20s vs. Run15 all - 13 PCs

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 424key Run21 first 20s vs. Run21 all - 13 PCs

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 451key Run30 first 20s vs. Run30 all - 14 PCs

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 341key Run10 first 30s vs. Run10 all - 19 PCs

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 65key Run15 first 180s vs. Run15 (clean) all - 5 PCs

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 217key Run21 first 60s vs. Run21 (clean) all - 25 PCs

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 306key Run30 first 40s vs. Run30 (clean) all - 23 PCs



92 
 

 
Figure 33 – Nov21 Run7 with Various Baseline Window Lengths 

 
It was expected that a measurement of clean data would have a lower MD when 

compared to itself or other clean data than when compared to dirty or infected data.  In 

some cases, such as Figure 34 this was the case, while in others, such as Figure 35 it was 

not.  Again, it was unclear why this should be the case, though it seemed highly 

0 100 200 300 400 500 600 700 800 900 1000
2000

4000

6000

8000

10000

12000

14000

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 579key Run7 first 10s vs. Run7 (clean) all - 7 PCs

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

10000

12000

14000

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 309key Run7 first 30s vs. Run7 (clean) all - 19 PCs

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
x 10

4

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 246key Run7 first 40s vs. Run7 (clean) all - 22 PCs

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 176key Run7 first 60s vs. Run7 (clean) all - 26 PCs

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 99key Run7 first 120s vs. Run 7 (clean) all - 15 PCs

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 79key Run7 first 180s vs. Run 7 (clean) all - 5 PCs



93 
 

dependent on baseline window size; however, it can easily be seen that discrimination 

was visually possible between clean, dirty, and infected datasets. 

 
Figure 34 – Nov 21 Run7 First 40s vs. Run7 (clean) and Run13 (dirty) 

 
The case of interest, of course, was determining whether activity was legitimate or 

illegitimate, so a clean dataset (Run7) was concatenated with dirty (Run13) and infected 

datasets (Run12) to simulate continuous data from the same system under normal use and 

intrusion.  Figure 35 shows the results of using a 20 second baseline generated at 

(simulated) start-up, while Figure 36 shows the effect of updating the baseline just prior 

to the transition to dirty data, and Figure 37 shows the effect of updating the baseline just 

after legitimate activity has begun.  If the window for the baseline was doubled to 40 

seconds after legitimate activity began, the result was dramatically improved (Figure 38).  

These examples emphasized the need to re-establish a sense of self when system 

conditions change and re-iterated the efficacy of an event-driven baseline update; 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12
x 10

4

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 Run7 first 40s vs. Run7 (clean) & Run13 (dirty) - 22 PCs



94 
 

however, they also suggest the baseline window size may need to change depending on 

conditions. 

 
Figure 35 – Nov 21 Run7 first 20s vs. Run7 (clean) Run13 (dirty) and Run12 (infected)  

 

 
Figure 36 – Nov 21 Run7 last 20s vs. Run7 last 20s (clean) Run13 (dirty) Run12 (infected)  

 

0 500 1000 1500 2000 2500 3000
0

5

10

15
x 10

4

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 382key Run7 first 20s vs. Run7 (clean) Run13 (dirty) Run12 - 13 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 385key Run7 last 20s (clean) vs. Run7 last 20s, Run13 (dirty), Run12 (infected) - 14 PCs



95 
 

 
Figure 37 – Nov 21 Run13 first 20s vs. Run13 (dirty) and Run12 (infected) 

 

 
Figure 38 – Nov 21 Run13 first 40s vs. Run13 (dirty) and Run12 (infected) 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 419key Run13 first 20s vs. Run13 (dirty) Run12 (infected) - 14 PCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6
x 10

8

Seconds

M
ah

al
an

ob
is

 D
is

ta
nc

e

Nov21 273key Run13 first 40s vs. Run13 (dirty) & Run12 (infected) - 22 PCs



96 
 

4.5  PCA-PCA-MD-QD 

The values for the Mahalanobis Distance (MD) between Principal Component 

scores provide a valid method for discrimination between legitimate and illegitimate 

activity, however a measurement of effectiveness is needed to compare the results against 

other IDSs.  Quadratic Discrimination (QD) provides a means to test the efficiency of this 

method as described in Section 3.5.3. 

When the MDs from the Nov25 tests (Figure 27 - Figure 29) were input to 

quadratic discriminators, using the first 20 seconds as a baseline and comparing all the 

data, the results were as follows: 

25-Nov Predicted Membership
Run 1 clean infected APER

Actual clean 981 18 999 0.01802
Membership infected 7 992 999 0.00701

Total data 
points

 

25-Nov Predicted Membership
Run 2 clean dirty APER

Actual clean 999 0 999 0
Membership dirty 0 999 999 0

Total data 
points

 

25-Nov Predicted Membership
Run 3 clean dirty infected APER

Actual clean 645 21 0 666 0.031532
Membership dirty 1 642 23 666 0.036036

infected 0 6 660 666 0.009009

Total data 
points

 
Figure 39 – Nov25 Quadratic Discrimination with Individual Covariance Matrices 

 



97 
 

25-Nov Predicted Membership
Run 1 clean infected APER

Actual clean 999 0 999 0
Membership infected 252 747 999 0.25225

Total data 
points

 

25-Nov Predicted Membership
Run 2 clean dirty APER

Actual clean 999 0 999 0
Membership dirty 2 997 999 0.002

Total data 
points

 

25-Nov Predicted Membership
Run 3 clean dirty infected APER

Actual clean 666 0 0 666 0
Membership dirty 184 442 40 666 0.336336

infected 3 0 663 666 0.004505

Total data 
points

 
Figure 40 – Nov25 Quadratic Discrimination with Pooled Covariance Matrices 

 
From these results, it is easy to see that using a pooled covariance matrix instead 

of individual covariance matrices provides better discrimination.  Predictably, the worst 

error was encountered when trying to distinguish legitimate activity (dirty) from intrusion 

(infected) during Run3.  The false positive rate (identifying legitimate activity as 

illegitimate) was 40/666 = 6.01% but the false negative rate (identifying illegitimate 

activity as legitimate) was only 3/666 = 0.45% which is outstanding.  Similar results were 

obtained with other test data.  For instance, Run7 (clean), Run13 (dirty), and Run12 

(infected) concatenated data produced no false positives and a 98.29% detection rate: 

21-Nov Predicted Membership
Runs 7, 13, 12 clean dirty infected APER

Actual clean 941 53 0 994 0.05332
Membership dirty 0 994 0 994 0

infected 0 17 977 994 0.017103

Total data 
points

 
Figure 41 - Nov21 Quadratic Discrimination with Pooled Covariance Matrices 



98 
 

4.6  Comparison to other IDSs 

Although it is always difficult and dangerous to compare different data sets and 

techniques, PAIDS compares well to other IDSs, such as NIDES which had a 77.7% true 

positive rate and 1% false positive rate (Anderson, Frivold, & Valdes, 1995) and a 

genetic algorithm tested on KDD 1999 Cup data with a 95.47% true positive and 10.63% 

false positive rate (Kabiri & Ghorbani, 2005).  Other anomaly-based algorithms (Figures 

42-44) performed better against network attacks with respect to false positives but were 

not adaptable to changes in real-time.   

Some research suggests that if “the cost of acting on a false positive [is] 

sufficiently low” (Fox, Kiciman, & Patterson, 2004) that the number of false positives is 

irrelevant, but it is always a good idea to try to reduce them as much as possible while 

still providing an acceptable true positive rate.  An extensive inspection of issues in false 

positive rates for IDSs was performed by Mell, et al. in 2003.  By adjusting the control 

limits placed on Mahalanobis Distance in PAIDS, it would be possible to decrease the 

false positive rate while maintaining its high true positive rate. 

 
Figure 42 - IDS effectiveness rates (Wong & Lai, 2006) 



99 
 

 
Figure 43 - IDS effectiveness rates (Huang & Lee, 2003) 

 
Figure 44 - Comparison of IDS effectiveness (Chen, Dai, Li, & Cheng, 2007) 



100 
 

4.7  Key Operating System Processes 

In an attempt to sell anti-virus and scanning software, companies often resort to 

vague and ominous threats.  Uniblue offers a typical pitch:  “In the recesses of your 

computer, 20-30 invisible processes run silently in the background.  Some hog system 

resources, turning your PC into a sluggish computer.  Worse yet, other useless processes 

harbour spyware and Trojans - violating your privacy and giving hackers free reign on 

your computer.  Uniblue ProcessLibrary is an invaluable resource for anyone who wants 

to know the exact purpose of every single process.” (Uniblue, 2008)  However, more 

often than not, the scanning software offered contains spyware and phishing programs 

designed to advertise more anti-virus software and instill fear of further infection.  

Unfortunately, the operating system software has become so complex that even experts 

are often unsure of what a process really does. 

Principal Component Analysis was used to highlight which processes were most 

significant in discriminating normal from abnormal systems.   Using empirical data, any 

loads with absolute values greater than 0.2 were considered highly loaded.  The four 

processes which loaded highly on the first principal component from clean data for all 

three runs of the Nov 25 test data were: cmd.exe, csrss.exe, lsass.exe and svchost.exe.  

Although these are only a few of the process characteristics retained, they are indicative 

of the processes that are relevant to intrusion detection and some of the efforts by hackers 

to avoid discovery.  The website www.ProcessLibrary.com (Uniblue, 2008) describes 

these processes as having the following functions. 

cmd Allows access to the Microsoft Windows Command Prompt, also known as 
Microsoft DOS. To-date, cmd.exe is a 32-bit command prompt used in 

http://www.processlibrary.com/�


101 
 

Windows NT, 2000, and XP and offers disk and file maintenance functions to 
your computer as well as network functions. This program is a non-essential 
system process, but should not be terminated unless suspected to be causing 
problems. 

csrss The Microsoft Client Server Runtime Server subsystem utilizes the process 
csrss.exe for managing the majority of the graphical instruction sets under the 
Microsoft Windows operating system. As such Csrss.exe provides the critical 
functions of the operating system, and its termination can result in the Blue 
Screen of Death being displayed. 
Csrss.exe controls threading and Win32 console window features. Threading is 
where the application splits itself into multiple simultaneous running tasks. 
Threads supported by csrss.exe are different from processes in that threads are 
commonly contained within the process, with various threads sharing resources 
within the same process. The Win32 console is the plain text window in the 
Windows API system (programs can use the console without the need for image 
display).  
In mobile devices such as notebooks and laptops, the process csrss.exe is 
closely dependent on power management schemes implemented by the system 
as defined under the Control Panel option. 

lsass  The process lsass.exe serves as the Local Security Authentication Server by 
Microsoft, Inc. It is responsible for the enforcement of the security policy within 
the operating system. This process checks whether a user’s supplied 
identification is valid or not whenever he or she tries to access the computer 
system. 
With the execution of the file lsass.exe, the system acquires security by 
preventing the access of unwanted users to any private information. The file 
lsass.exe also handles the password modifications done by the user. 
The process lsass.exe mainly operates in the system through its ability to create 
access tokens. These tokens encapsulate the file’s security descriptor, which 
contains the necessary information to process user authentication such as data 
on which user holds access to the system and whether the access is mandatory 
or discretionary.  

svchost  The file svchost.exe is the Generic Host Process for Win32 Services used for 
administering 16-bit-based dynamically linked library files (DLL files) 
including other supplementary support applications. 
As operating systems became more complex Microsoft decided to run more 
software functionality from a dynamic link library (DLL) interface. However 
DLLs are unable to launch themselves and require at least one executable 
program, i.e. svchost.exe, is needed to bridge between the library process and 
the operating system.  
Through the solitary file svchost.exe, the DLLs efficiently contain and dispense 
Win32 services as well as neatly facilitate the execution of svchost.exe’s own 
operations. Acting as a host, the file svchost.exe creates multiple instances of 



102 
 

itself. The multiple executions of the file svchost.exe contribute to the stability 
and security of the operating system by reducing the possibility of a crashing 
process that causes a domino effect on its neighbor processes, thereby creating a 
system-wide crash in the machine. 

However, even when a process appears legitimate, “determining whether [a 

process] is a virus or a legitimate Windows process depends on the directory location it 

executes or runs from.” (Uniblue, 2008)  Hackers often make minor alterations in 

legitimate process names to “hide” in the operating system.  Uniblue lists lsasss.exe, 

svhost.exe and csrsc.exe as three of the top five security threats.  (Uniblue, 2008)  These 

are malware versions of legitimate processes associated with the w32/Sasser.E worm, 

W32.mydoomI@mm worm and W32.spybot.cf backdoor trojan respectively.  You will 

notice that they are very close to three of the four processes highlighted by PCA as being 

significant for detecting intrusion. 

  



103 
 

V. Discussion 

5.1  Conclusions 

 PAIDS monitors “static” processes running at the host level to develop a sense of 

“self” which can be analyzed for anomalies to detect intrusions by malware.  This offers a 

last layer of defense in a multi-layered intrusion detection system which should also 

include physical, operational, and network security.  The baseline data representing 

“normality” can be updated in near-real-time and since the recorded variables change 

over time and are discriminated in an 18 dimensional feature space, the IDS is highly 

resistant to reverse engineering or other hacking efforts.  PAIDS would be most efficient 

on a platform outside the operating system to be monitored, such as a hardware primitive 

or software at the kernel level or below. 

Data collection for the PAIDS algorithm is sensitive to window length and 

recurrence, as both these variables significantly change the results of Principal 

Component Analysis and Mahalanobis Distance.  Empirical data implies that 20 seconds 

of baseline data is sufficient for discrimination while limiting the use of memory and 

processing time and that an event-driven update of the baseline is most appropriate.  

Mahalanobis Distance between selected Principal Component scores from host-level 

process characteristics over time is adequate for an analyst to detect an intrusion, though 

some known uninfected historical data is necessary to train the IDS to recognize 

legitimate activity.   Preliminary data has shown that PAIDS can reliably produce greater 

than a 98% success rate in discriminating between legitimate and illegitimate activity 

with less than a 6% false positive rate. 



104 
 

5.2  Limitations 

As is true with most IDSs, PAIDS is a purely reactive program, and will only 

detect an intrusion after it has begun.  Thus, it is a last resort line of defense, notifying the 

user when the actual attack is occurring, rather than preventing the attack from 

happening.  PAIDS assumes the system is not infected at start-up, since the intrusion 

would then be incorporated into the sense of “self” and operation of the malware would 

not be detected as an anomaly.  Also, different operating systems may require different 

implementations of the algorithm, which would have to be developed separately.  Finally, 

PAIDS uses multivariate statistical analysis methods which require relatively powerful 

mathematical programming, which may or may not be available in lightweight software 

or hardware primitives functioning outside the monitored operating system. 

The methods used in this research required the output of one program to be 

analyzed by another program; however, any efficient application of PAIDS will have to 

take measurements directly from the operating system instead of relying on additional 

software to provide the data.  This is primarily because the collection and analysis rate of 

any software is too slow to detect an anomaly in time to make a difference.  The 

secondary reason is for security purposes, so a kernel rootkit or similar attack will not be 

able to subvert the collected data.  It is not known if this technique is fully resistant to an 

attack that manipulates the process data itself, however, if the monitors are outside the 

operating system this would not be a factor.  Multi-context primitive hardware monitors 

such as those suggested by Mott (2007) and Hart (2007) would be able to record the 

appropriate data, but software working outside the monitored operating system would 

probably be required to analyze the data. 



105 
 

5.3  Contributions 

Very few IDSs use host-level system processes to identify intrusions.  Using 

anomalies in hardware characteristics is a powerful tool because it does not rely on 

signature databases and it is not subject to standard spoofing like packet analysis can be.  

Instead, PAIDS can detect the operation of malware using subtle changes in the operating 

system that the user may not be aware of and that other anti-virus software is not 

designed to recognize.  This is analogous to an expert observer “knowing” something is 

wrong with the computer due to sluggish or altered operation, yet not being able to 

identify exactly what is causing the problem.  With PAIDS, the user no longer needs to 

be a computer analyst to know there is something wrong with the computer, but will still 

need help finding the actual malware and cleaning the system. 

Also, most anomaly IDSs rely on historical data which is updated once per 

session at best, and often no faster than daily or weekly.  PAIDS updates its baseline in 

near-real-time so that legitimate changes in the operating system can be incorporated into 

the definition of normality.  This may require some user input when opening legitimate 

programs, but this is a small price to pay for security.  Not only does the sense of self 

update in near-real-time, but the feature set it uses is completely opaque to an outside 

observer and also changes from baseline to baseline, so it is highly resistant to reverse 

engineering and hacking.   

The opacity in the IDS is primarily due to the use of Mahalanobis Distance 

between Principal Component scores to distinguish between legitimate and illegitimate 

activity, which is another valuable contribution which has not been used in any other IDS 



106 
 

before.  Also, the use of PCA to identify key variables loaded on the first principal 

component as a dimension reduction method, though unorthodox, is highly effective and 

increases the security of the IDS by changing the feature set in near-real-time while 

providing significant discrimination. 

Adding random noise to columns of zero variance to avoid singularity and infinite 

value problems was an original solution to a difficult idiosyncrasy in matrix comparisons.  

This technique is only applicable if individual variables cannot be thrown out for reasons 

of data and dimension consistency such as existed in this research.  In other words, if 

datasets from different populations must be compared, but columns of zero variance 

occur in different characteristics of each population, then this technique is valid.  Also, 

the dataset must be normalized, or the noise must be scaled to naturally occurring levels 

of activity, otherwise the noise may show up as anomalous and result in a false positive. 

Finally, setting up a “laboratory” to investigate malware is always a unique 

experience due to the potential volatility and infective nature of many computer viruses.  

The use of stand-alone laptops connected with a crossover cable solved a variety of 

problems, such as the need to measure hardware characteristics, which was not possible 

using virtual machines, and the requirement for a network connection to run the backdoor 

client-server application without subjecting the victim system to a real network with 

possible unknown intrusion attempts.  Though undoubtedly this system configuration has 

been used before, this research further validated this particular technique for testing the 

effects of known malware on an IDS. 



107 
 

5.4  Future Research 

Obviously, this method must be tested using other types of malware and intrusion 

techniques to ensure it is valid.  Also, PAIDS could be tested on different operating 

systems (LINUX, UNIX, etc.) by analyzing the applicable process data or other available 

hardware information.  Some consideration was given to recovering additional 

information from the hardware, such as battery life as suggested by Buennemeyer, et al. 

(2007) or GPS location and velocity (Zhang, Lee, & Huang, 2003), but this would add 

significant complexity to the experiment.  However, this data could easily be 

incorporated into the proposed PAIDS, and would be a valuable addition for 

discrimination in mobile ad-hoc networks.   

Adding this type of detector to primitive hardware monitors or non-resident 

software is key to the successful implementation of PAIDS or any truly effective host-

based IDS.  This would ensure integrity of the IDS as well as provide the necessary 

system speed to catch an intrusion before too much damage occurred.  Obviously, the 

methods demonstrated in this research are only a proof of concept and they would have to 

be incorporated into specially designed hardware or software.  However, this is beyond 

the ability of the author and will have to be accomplished by an actual computer 

engineer. 

Optimizing the data collection times and dimension reduction techniques would 

also be important to fielding this IDS.  An experiment determining whether a rolling or 

periodic window is more appropriate than an event-driven one might help improve the 

PAIDS solution.  Although 10 seconds was definitely too short and 120 seconds too long, 



108 
 

20 seconds was chosen because it seemed to provide a good solution in a limited amount 

of time, and was not necessarily based on solid mathematical analysis.  A rolling window 

has the danger of incorporating anomalies into the normal baseline, while a periodic 

window may not be responsive enough to changing conditions; however, it might 

eliminate the need for user input which has been a major complaint of security systems 

such as the one found on Microsoft Vista.  A variable sized window might also be 

effective based on the existing conditions of the system. 

Dimension reduction could be based on Johnson’s secant method instead of 

retaining data with 80% of the variance, or a smaller percentage may provide the same or 

better discrimination.  Also, Factor Analysis could be performed on the key variables to 

identify which processes or characteristics are most valuable to anomaly detection.  This 

may also provide insight into the function of many intrusions.  Comparison of results 

when using a covariance versus a correlation matrix when performing Principal 

Component Analysis might be valuable.  Finally, an investigation to prove process 

characteristics and samples are truly independent, or to prove that introduction of noise 

into the data does not significantly affect the solution would validate some assumptions 

made in this research. 



109 
 

Appendix A – Output Data from TaskInfo in Excel Format 

Process PID % CPU % K CPU Time K Time Sw/s InMem KB Private KB Total KB Th Pri OS VerState Handles Windows USER Obj GDI Obj Start Time Up Time Session ID

Interrupts Time    0:03 0:03 149 0 0 0 2 Hard 5.1  0 0 0 0   0

DPC Time    0:01 0:01 31 0 0 0 2 DPC 5.1  0 0 0 0   0

Idle  93.49% 93.49% 32:53:00 32:53:00 3063 28 0 0 2 Very Idle 5.1  0 0 0 0   0

System  0.72% 0.72% 0:09 0:09 938 240 28 1,876 80 Norm 5.1  842 0 0 0   0

smss.exe 1892     0 392 176 3,800 3 ANorm+1 5.1 32 NT Na 21 0 0 0 10/31/2008 8:52 34:43:00 0

csrss.exe 232   0:03 0:02 29 4,096 1,788 26,500 12 High 5.1 32 NT Na 639 0 63 68 10/31/2008 8:52 34:41:00 0

winlogon.exe 660   0:01 0:01 0 4,580 6,728 54,484 21 High 4 32 GUI 537 0 16 50 10/31/2008 8:52 34:38:00 0

services.exe 756 2.17% 2.17% 0:20 0:16 793 4,472 2,328 38,012 17 Norm+1 4 32 GUI 357 0 2 4 10/31/2008 8:52 34:38:00 0

lsass.exe 768     50 6,768 3,988 42,840 24 Norm+1 4 32 GUI 421 0 2 4 10/31/2008 8:52 34:38:00 0

svchost.exe 1052     11 5,096 2,832 62,472 21 Norm 4 32 GUI 218 0 1 4 10/31/2008 8:52 34:37:00 0

svchost.exe 1112    0 4,628 2,068 38,144 10 Norm 4 32 GUI 417 0 1 4 10/31/2008 8:52 34:36:00 0

svchost.exe 1764   0:02 0:01 13 24,204 15,588 105,112 66 Norm 4 32 GUI 1,566 0 30 11 10/31/2008 8:52 34:36:00 0

EvtEng.exe 1868     0 12,372 8,792 193,604 11 Norm 4 32 GUI 187 0 10 4 10/31/2008 8:52 34:36:00 0

S24EvMon.exe 724 0.73% 0.72% 0:13 0:11 998 11,700 9,224 151,976 8 Norm 4 32 GUI 282 2 13 13 10/31/2008 8:52 34:34:00 0

WLKeeper.exe 924     0 13,032 8,856 139,824 5 Norm 4 32 GUI 189 2 6 12 10/31/2008 8:52 34:34:00 0

svchost.exe 1216     64 2,940 1,156 28,412 6 Norm 4 32 GUI 62 0 1 4 10/31/2008 8:52 34:34:00 0

svchost.exe 1460     0 4,484 1,764 37,972 13 Norm 4 32 GUI 217 0 1 4 10/31/2008 8:52 34:34:00 0

ccSetMgr.exe 1688     0 4,112 3,796 44,992 7 Norm 4 32 GUI 198 0 1 4 10/31/2008 8:53 34:33:00 0

ccEvtMgr.exe 1840     0 2,812 3,952 43,624 19 Norm 4 32 GUI 305 0 1 4 10/31/2008 8:53 34:33:00 0

WLTRYSVC.EXE 1920     0 1,632 432 15,208 2 Norm 4 32 Con 35 0 1 4 10/31/2008 8:53 34:33:00 0

bcmwltry.exe 1996     4 6,560 2,828 48,948 4 Norm 4 32 GUI 156 3 15 15 10/31/2008 8:53 34:33:00 0

spoolsv.exe 176     0 5,188 3,356 45,836 12 Norm 4 32 GUI 128 0 4 4 10/31/2008 8:53 34:33:00 0

SCardSvr.exe 312     7 2,644 928 27,932 7 Norm 4 32 Con 85 0 2 4 10/31/2008 8:53 34:33:00 0

Explorer.EXE 600   0:02 0:02 30 20,732 13,292 91,180 12 Norm 4.1 32 GUI 429 55 118 256 10/31/2008 8:53 34:13:00 0

DirectCD.exe 328     0 5,252 1,800 43,540 4 Norm 4 32 GUI 113 7 21 19 10/31/2008 8:53 34:12:00 0

WLTRAY.exe 1036     3 5,008 1,248 41,476 3 Norm 4 32 GUI 116 3 12 15 10/31/2008 8:53 34:12:00 0

SynTPEnh.exe 1336   0:01  0 4,736 1,544 39,144 4 Norm 4 32 GUI 91 8 22 42 10/31/2008 8:53 34:12:00 0  



110 
 

Appendix A – Output Data from TaskInfo in Excel Format (cont.) 

User ID Reads Read KB Rd Rate B/s Writes Write KB Wr Rate B/s Version Description Company

 0 0 0 0 0 0  Interrupts Time Placeholder  

 0 0 0 0 0 0  DPC Time Placeholder  

 0 0 0 0 0 0  System Idle Process  

 78,054 65,451 0 1,287 4,562 0  System  

NT AUTHORITY \ SYSTEM 47 26 0 4 0 0 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158) Windows NT Session Manager Microsoft Corporation

NT AUTHORITY \ SYSTEM 15,361 1,845 0 0 0 0 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158) Client Server Runtime Process Microsoft Corporation

NT AUTHORITY \ SYSTEM 525 2,505 0 131 11 0 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158) Windows NT Logon Application Microsoft Corporation

NT AUTHORITY \ SYSTEM 172 21 0 646 2,714 0 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158) Services and Controller app Microsoft Corporation

NT AUTHORITY \ SYSTEM 6,499 969 1,617 5,874 548 2,048 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158) LSA Shell (Export Version) Microsoft Corporation

NT AUTHORITY \ SYSTEM 92 321 0 13 0 0 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158) Generic Host Process for Win32 Services Microsoft Corporation

NT AUTHORITY \ NETWORK SE 100 321 0 21 0 0 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158) Generic Host Process for Win32 Services Microsoft Corporation

NT AUTHORITY \ SYSTEM 5,173 8,420 5,538 3,071 4,570 5,682 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158) Generic Host Process for Win32 Services Microsoft Corporation

NT AUTHORITY \ SYSTEM 276 1,065 0 43 21 0 11.1.0.4 Intel(R) PROSet/Wireless Event Log Intel Corporation

NT AUTHORITY \ SYSTEM 134 538 0 9 0 0 11, 1, 0, 9 Wireless Management Service Intel Corporation 

NT AUTHORITY \ SYSTEM 130 530 0 7 0 0 11.1.0.4 WLANKEEPER Intel(R) Corporation

NT AUTHORITY \ NETWORK SE 5 0 0 3 0 0 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158) Generic Host Process for Win32 Services Microsoft Corporation

NT AUTHORITY \ LOCAL SERV 16 23 0 14 0 0 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158) Generic Host Process for Win32 Services Microsoft Corporation

NT AUTHORITY \ SYSTEM 1,971 456 0 28 18 0 103.5.6.3 Symantec Settings Manager Service Symantec Corporation

NT AUTHORITY \ SYSTEM 3,618 442 0 52 2 0 103.5.6.3 Symantec Event Manager Service Symantec Corporation

NT AUTHORITY \ SYSTEM 3 0 0 3 0 0  WLTRYSVC.EXE  

NT AUTHORITY \ SYSTEM 100 331 0 3 1 0 4.100.15.8 Dell Wireless WLAN Card Wireless Network Controller Dell Inc.

NT AUTHORITY \ SYSTEM 19 23 0 18 0 0 5.1.2600.2696 (xpsp_sp2_gdr.050610-1519) Spooler SubSystem App Microsoft Corporation

NT AUTHORITY \ LOCAL SERV 23,724 833 400 11,862 309 148 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158) Smart Card Resource Management Server Microsoft Corporation

LISXP4913LT \ user 1,050 4,853 0 28 6 0 6.00.2900.3156 (xpsp_sp2_gdr.070613-1234) Windows Explorer Microsoft Corporation

LISXP4913LT \ user 67 30 0 5 0 0 5.3.5.10 DirectCD Application Roxio

LISXP4913LT \ user 3 23 0 2 0 0 4.100.15.8 Dell Wireless WLAN Card Wireless Network Tray Applet Dell Inc.

LISXP4913LT \ user 1 23 0 0 0 0 8.2.4.6 08Mar06 Synaptics TouchPad Enhancements Synaptics, Inc.

 



111 
 

Appendix B – SubSeven Command Screens 

 



112 
 

Appendix C – TaskInfo Screenshot 

  



113 
 

Appendix D – Import Data  

1 % This function records system data from freeware product TaskInfo for 
  % a hardcoded length of time (in seconds) then determines how many  
  % processes are "static" and collects data for only those processes  
  % then puts the data into a 2-dimensional array called "cleanoutput"  
  % which is normalized data with all columns of zero variance changed to % noise.    
  "rawoutput" is raw data without columns changed. 
  % ROWS are snapshots in time - intervals are 1 second 
  % COLUMNS are recorded values of each "static" process in vector format 
  % for 18 system characteristics in order as follows:  
10%   1 - % CPU used by each process 
  %   2 - % Kernel CPU used by each process 
  %   3 - # Switches to execution of process/second 
  %   4 - Physical memory used by process in KB  
  %   5 - Virtual memory used by process in  KB  
  %   6 - Total virtual address space used by process in KB 
  %   7 - # Threads currently running in process 
  %   8 - # Handles opened by process 
  %   9 - # Windows opened by process 
  %   10 - # User objects opened by process 
20%   11 - # GDI objects opened by process 
  %   12 - # Read operations issued by process 
  %   13 - Data read by process in KB 
  %   14 - Read data rate in bytes/sec 
  %   15 - # Write operations issued by process 
  %   16 - Data written by process in KB 
  %   17 - Write data rate in bytes/sec 
  %   18 - # of processes beyond the "static" processes running at time 
  
  function [rawoutput,cleanoutput] = import_data3  
30  
  for i = 1:2002 
    j = num2str(i); 
    filename = strcat(j,'.','txt'); 
        fileID = fopen(filename); % reads output file in order 
         
        % This subroutine written by Maj Larry Nance 

  %need to seek down three carriage returns to start on 4th line 
        temp = fgets(fileID); %reads first line (don't need this line) 
        temp = fgets(fileID); %reads second line (don't need this line) 
40      temp = fgets(fileID); %reads third line (don't need this line 
        %now we are on the third line and start recording values 
        quit = 0; 
        row = 0; 
        while quit == 0 
          row = row + 1; 
          line = fgets (fileID);  %read the next line of the text file 
          if line == -1  %if we have reached the end of file, quit 
            quit = 1; 
          end 
50  
          %Now need to parse the line and assign numbers to variables 
          quit1 =0; 
          column = 0; 
          while quit1 == 0 && quit == 0 
            [data,line] = strtok(line,9);  %go to each tab 
  
            %get rid of % signs if they are there 
            leng = size(data,2); 
            if leng > 0 
60            if data(leng) == '%' 
                data=data(1:leng-1); 
              end 
            end 



114 
 

  
            % get rid of commas 
            commaindex = findstr(data,','); 
            if ~isempty(commaindex) 
              left = data(1:commaindex-1); 
              right = data(commaindex+1:leng); 
              data = strcat(left,right); 
 70         end 
            column = column + 1;  %columns 
  
            % put numbers into proper rows and columns 
            temp = str2double (data); 
            if ~isnan(temp) 
              if size(temp,2) == 1 
                A(row,column) = temp; 
              else 
                A(row,column) = 0; 
 80           end 
            else 
              A(row,column) = 0; 
            end 
            if isempty(data) 
              quit1 = 1; 
            end 
          end %while 
        end %while 
    % closes output.txt file 
 90 close = fclose(fileID);  
     
    % put process ID numbers from first two samples into temp array 
    if i == 1 
        static = zeros(100,2); 
    end 
    if i <= 2 
        static(1:size(A,1),i) = A(:,2); 
    end 
        % determine number of "static" processes by comparing PIDs 
100 if i == 2 
        processes = find(logical(static(:,2)-static(:,1)),1,'first') 
    end         
    if i > 2 
 
        % remove unwanted columns from matrix  
        temp = [A(:,3:4),A(:,7:11),A(:,15:18),A(:,23:28)]; 
        % calculate and record number of processes running in sample  
        temp(1,18)=size(temp,1); 
        % remove unwanted rows from matrix 
110     temp = temp(1:processes,:); 
        % add data as row vector to output matrix in order of processes   
        % and characteristics (i.e. starting with first characteristic)  
        out(i,:) = reshape(temp,1,[]); 
    end 
     
    end; 
  
   % save raw data delete first two lines because they are blank. 
   rawoutput = out(3:size(out,1),:); 
120  
   % create normalized matrix, if no variance exists in column, change to 
   % random noise to correct singularity problems later 
   maxout = max(rawoutput); 
   stand = std(rawoutput); 
   for n = 1:size(rawoutput,2) 
       if stand(n) (n) <= 0.00000000001 
           cleanoutput(:,n) = rand(size(rawoutput,1),1); 
       else  
           cleanoutput(:,n) = rawoutput(:,n)/maxout(n); 
130    end 
   end  



115 
 

Appendix E – Principal Component Analysis Baseline  

1  % Perform Principal Component Analysis on given data matrices, then  
   % find highly loaded key variables to determine feature set to be  
   % collected thus reducing dimensionality of original data 
  
   % Inputs required: 
   % X     = data matrix you want to establish baseline from 
   %         (for instance, first 30 seconds of collected data) 
 
   % Outputs: 
10 % key   = key variables with |load|>.2 
   % z     = Eigenvalues of Correlation Matrix 
  
   function [z,key] = PCA_baseline(X) 
   tic 
  
   %create normalized matrices, if no variance exists in column, change  
   %to random noise to correct singularity problems in corr matrix 
   maxout = max(X); 
   stand = std(X); 
   for n = 1:size(X,2) 
20     if stand(n) <= 0.00000000001 
           X(:,n) = randn(size(X,1),1); 
       else  
           X(:,n) = X(:,n)/maxout(n); 
       end 
   end 
 
   % Find Mean (M) of baseline data then center (XD) and standardize     
   (XS) data  
   M = mean(X); 
30 E = diag(ones(size(X,1))); 
   XD = X - E * M; 
   D = inv(sqrt(diag(diag(cov(X))))); 
   XS = XD *D; 
  
   % calculate Correlation matrix (cor) eigenvalues (LR) and  
   eigenvectors (AR)  
   cor = cov(XS); 
   [AR,LR] = eig(cor); 
   AR = fliplr(AR); 
40 LR = fliplr(flipud(LR)); 
  
   % calculate loading matrix (LM) 
   LM = AR * sqrt(LR); 
  
   % determine key variables and save in vector (key) 
   n = 1; 
   for i=1:size(LM,1) 
       if abs(LM(i,1)) >= .2 
          key(n) = i; 
50        n = n + 1; 
       end 
   end 
   % display eigenvalues in descending order 
   z = diag(LR)'; 
   toc 
   end  



116 
 

Appendix F – PCA/Mahalanobis Distance 

1  % Perform Principal Component Analysis on given data matrices then 
   % find Mahalanobis Distance between feature space over time and plot 
  
   % Inputs required: 
   % base  = baseline data to be compared against 
   % data  = data matrix if you want to compare to nominal 
  
   % Outputs: 
   % Y     = Component Scores Matrix 
10 % COR   = Indicator Correlation Matrix 
   % AR    = Eigenvectors of Correlation Matrix 
   % z     = Eigenvalues of Correlation Matrix 
   % MD    = Mahalanobis Distance between Principal Component Scores 
  
   function [Y,COR,AR,z,MD,key] = PCA_MD(base,data) 
   tic 
   % if only one variable is assigned, assume no baseline data matrix 
   if nargin == 1 
       data=base; 
20 end 
  
   % create normalized matrices and if no variance exists in column,  
   % change to random noise to correct singularity problems later 
   maxout = max(base); 
   stand = std(base); 
   for n = 1:size(base,2) 
       if stand(n) <= 0.00000000001 
          base(:,n) = randn(size(base,1),1); 
       else  
30        base(:,n) = base(:,n)/maxout(n); 
       end 
   end 
   maxout = max(data); 
   stand = std(data); 
   for n = 1:size(data,2) 
       if stand(n) <= 0.00000000001 
           data(:,n) = rand(size(data,1),1); 
       else  
           data(:,n) = data(:,n)/maxout(n); 
40     end 
   end 
  
   % Find Mean (M) of baseline data, then center and standardize data  
   % for baseline (XSB) and data to be analyzed (XSD) 
   M = mean(base); 
   EB = diag(ones(size(base,1))); 
   ED = diag(ones(size(data,1))); 
   XDB = base - EB * M; 
   XDD = data - ED * M; 
50 D = inv(sqrt(diag(diag(cov(base))))); 
   XSB = XDB *D; 
   XSD = XDD *D; 



117 
 

  
   % calculate Correlation matrix (cor) and find eigenvalues (LR) and 
   % eigenvectors (AR)  
   cor = cov(XSB); 
   [AR,LR] = eig(COR); 
   AR = fliplr(AR); 
   LR = fliplr(flipud(LR)); 
  
60 % determine key variables and save in vector (key) 
   n = 1; 
   for i=1:size(LM,1) 
       if abs(LM(i,1)) >= .2 
           key(n) = i; 
           n = n + 1; 
       end 
   end 
  
   % display eigenvalues in descending order 
70 z = diag(LR)'; 
  
   % retain eigenvectors that contain 80% of variance 
   r = 0; 
   p = 0; 
   zs = sum(z); 
   while p <= .8 
       r = r + 1; 
       p = p + z(1,r)/zs; 
   end         
80 AR = AR(:,1:r); 
   LR = LR(1:r,1:r); 
  
   % calculate loading scores (Y) for retained eigenvalues 
   Y = XS * AR; 
  
   % calculate Mahalanobis Distance(MD) for each instantiation and plot 
   for i = 1:size(Y,1) 
       MD(i) = Y(i,:)*inv(LR)*(Y(i,:)');     
   end 
90 plot(MD, 'DisplayName', 'MD', 'YDataSource', 'MD'); figure(gcf) 
  
   hold on 
   xlabel('Seconds'); 
   ylabel('Mahalanobis Distance'); 
   hold off 
   toc 
   end 
 



118 
 

Appendix G – Factor Analysis/Mahalanobis Distance 

1  % Perform Factor Analysis on given data matrices 
   % and find Mahalanobis distance between data sets 
   % Inputs required: 
   % X     = data matrix 
  
   % Outputs: 
   % FS    = Factor Scores Matrix 
   % FL    = Factor Loading Matrix 
   % h2    = Commonality Matrix 
10 % PSI   = Uniqueness Matrix 
   % R     = Actual Correlation Matrix 
   % Rhat  = Estimation of Correlation Matrix 
   % Res   = Residual Correlation Matrix 
   % LR    = Eigenvalues of Correlation Matrix 
   % AR    = Eigenvectors of Correlation Matrix 
   % f     = number of retained factors 
  
   function [FS,FL,h2,PSI,R,Rhat,Res,LR,AR,f] = FA_MD(base,data)  
   tic 
20 % if only one variable is assigned, assume no baseline data matrix  
   if nargin == 1 
       data=base; 
   end 
  
   % create normalized matrices and if no variance exists in column,  
   % change to random noise to correct singularity problems later 
   maxout = max(base); 
   stand = std(base); 
   for n = 1:size(base,2) 
30     if stand(n) <= 0.00000000001 
           base(:,n) = rand(size(base,1),1); 
       else  
           base(:,n) = base(:,n)/maxout(n); 
       end 
   end 
   maxout = max(data); 
   stand = std(data); 
   for n = 1:size(data,2) 
       if stand(n) <= 0.00000000001 
40        data(:,n) = rand(size(data,1),1); 
       else  
          data(:,n) = data(:,n)/maxout(n); 
       end 
   end 
  
   % Find Mean (M), then center (XD) data: 
   M = mean(base); 
   E = diag(ones(size(data,1))); 
   XD = data - E * M; 
 
50 % calculate Covariance matrix (R) and find eigenvalues (LR) and eigenvectors (AR) 
   R = corr(base); 
   [AR,LR] = eig(R); 
   AR = fliplr(AR); 
   LR = fliplr(flipud(LR)); 
  
   % display eigenvalues in descending order 
   z = diag(LR)'; 
  
   % retain eigenvectors that contain 80% of variance 
60 r = 0; 
   p = 0; 
   zs = sum(z); 



119 
 

   while p <= .8 
       r = r + 1; 
       p = p + z(1,r)/zs; 
   end         
   AR = AR(:,1:r); 
   LR = LR(1:r,1:r); 
  
70 % determine how many factors to keep (f) by iterating until average 
   % commonality (h2) is greater than 0.8 or all factors are included 
   [m,n] = size(LR); 
   h2 = sparse(n,n); 
   f = 1; 
   while (trace(h2))/n < .8 && n >= f 
    
       % calculate loading matrix (FL) and rotate to maximize variance 
       for j = 1:f 
           FL(:,j) = sqrt(LR(j,j))*AR(:,j); 
80     end 
       if f > 1 
           FL = rotatefactors(FL,'method','orthomax','maxit',2000); 
       end 
  
       % calculate Estimated Correlation Matrix(Rhat), commonality(h2), Uniqueness(PSI)  
       h2 = FL*FL'; 
       PSI = eye(size(h2)) - diag(diag(h2)); 
       Rhat = h2 + PSI; 
  
90  % calculate factor scores (FS) and Residual Matrix (Res) 
    % try different methods until you get a non-singular matrix 
     
    FS = inv(FL'*inv(PSI)*FL)*(FL'*inv(PSI))*XD';%General Least Squares 
    %FS = XS*inv(R)*FL;                          %Regression Techniques 
    %N = length(X); 
    %FS = XS*inv((1/N)*(XS'*XS))*FL; 
    %FS = FL'*inv(FL*FL'+PSI)*XD';               %Min Mean Square Error 
    FS = FS'; 
    Res = R - Rhat; 
100   
    f = f + 1 
    end 
    f = f - 1; 
  
    % resize eigenvalues to match factor scores 
    LR = LR(1:f,1:f); 
  
    % calculate Mahalanobis Distance (MD) for each Factor Score 
    for i = 1:size(FS,1) 
110 MD(i) = FS(i,:)*inv(LR)*(FS(i,:)');     
    end 
  
    % Calculate mean of Mahalanobis Distance and make into vector 
    o = ones(size(FS,1)); 
    MDmean = mean(MD)*o(1,:); 
  
    % Plot MD and MDmean and label 
    plot(MD, 'DisplayName', 'MD', 'YDataSource', 'MD'); figure(gcf) 
    hold on 
120 plot(MDmean, 'DisplayName', 'MDmean', 'YDataSource', 'MD','Color','r' ); figure(gcf) 
    xlabel('Seconds'); 
    ylabel('Mahalanobis Distance'); 
    legend('MD','Mean'); 
    text(size(MDmean,1),(MDmean(1)),['MD Mean =     
    ',num2str(MDmean(1))],'HorizontalAlignment','center',... 
    'BackgroundColor',[0 1 0],'Margin',2); 
    hold off 
    toc 
    end 
130  



120 
 

Appendix H – 2-way Quadratic Discrimination  

1  % Perform Quadratic Discriminant Analysis on given two matrices 
   % If more than two matrices are required, they must be added to code 
 
   % Inputs required: 
   % X1,X2     = Indicator Data Matrices 
   % P1,P2     = Prior Probabilities 
  
   % Outputs: 
   % CP        = Indicator Pooled Covariation Matrix 
   % CM        = Confusion Matrix 
10    
   function [CP,CM,CM1,DL] = QuadDisc(X1,X2,P1,P2) 
   tic 
   % attempt to dummy proof and avoid infinite loops, if input is not specified 
   if nargin < 4, P2 = .5; end 
   if nargin < 3, P1 = .5; end 
   n1=size(X1,1); 
   n2=size(X2,1); 
  
   % Find Mean (M) of each matrix then center (XD): 
20 M1 = mean(X1); 
   E1 = diag(ones(n1)); 
   XD1 = X1 - E1 * M1; 
   M2 = mean(X2); 
   E2 = diag(ones(n2)); 
   XD2 = X2 - E2 * M2; 
  
   % create normalized matrices, if no variance exists in column, change to 
   % random noise to correct singularity problems later 
   maxout = max(XD1); 
30 stand = std(XD1); 
   for n = 1:size(XD1,2) 
       if stand(n) <= 0.00000000001 
          XD1(:,n) = rand(size(XD1,1),1); 
       else  
          XD1(:,n) = XD1(:,n)/maxout(n); 
       end 
   end 
   maxout = max(XD2); 
   stand = std(XD2); 
40 for n = 1:size(XD2,2) 
       if stand(n) <= 0.00000000001 
           XD2(:,n) = rand(size(XD2,1),1); 
       else  
           XD2(:,n) = XD2(:,n)/maxout(n); 
       end 
   end 
  
   % Calculate Pooled Covariance matrix(CP), build confusion matrices(CM, CM1)  
   CP = (1/(n1+n2-2))*((XD1'*XD1)+(XD2'*XD2)); 
50 CM = [0,0;0,0]; 
   CM1 = [0,0;0,0]; 
  
   % precalculate to speed up code 
   ICP = inv(CP); 
   DCP = log(det(CP)); 
   LP1 = log(P1); 



121 
 

    LP2 = log(P2); 
  
    % Calculate quadratic discriminant using pooled covariance matrix 
60  % and compare values to fill in confusion matrix 
    for i=1:n1 
        d11(i)=(-1/2)*DCP-(1/2)*(X1(i,:)-M1(1,:))*ICP*(X1(i,:)-M1(1,:))'+LP1; 
        d12(i)=(-1/2)*DCP-(1/2)*(X1(i,:)-M2(1,:))*ICP*(X1(i,:)-M2(1,:))'+LP2; 
        if d11(i) > d12(i) 
            CM(1,1)=CM(1,1)+1; 
        else 
            CM(1,2)=CM(1,2)+1; 
        end 
    end 
70  for i=1:n2 
        d21(i)=(-1/2)*DCP-(1/2)*(X2(i,:)-M1(1,:))*ICP*(X2(i,:)-M1(1,:))'+LP1; 
        d22(i)=(-1/2)*DCP-(1/2)*(X2(i,:)-M2(1,:))*ICP*(X2(i,:)-M2(1,:))'+LP2; 
        if d21(i) > d22(i) 
            CM(2,1)=CM(2,1)+1; 
        else 
            CM(2,2)=CM(2,2)+1; 
        end 
    end 
  
80  % precalculate to speed up code 
    IC1 = inv(cov(X1)); 
    IC2 = inv(cov(X2)); 
    DC1 = log(det(cov(X1))); 
    DC2 = log(det(cov(X2))); 
  
    % Calculate quadratic discriminant using individual covariance matrices 
    % and compare values to fill in confusion matrix 
    for i=1:n1 
        d11(i)=(-1/2)*DC1-(1/2)*(X1(i,:)-M1(1,:))*IC1*(X1(i,:)-M1(1,:))'+LP1; 
90      d12(i)=(-1/2)*DC2-(1/2)*(X1(i,:)-M2(1,:))*IC2*(X1(i,:)-M2(1,:))'+LP2; 
        if d11(i) > d12(i) 
            CM1(1,1)=CM1(1,1)+1; 
        else 
            CM1(1,2)=CM1(1,2)+1; 
        end 
    end 
    for i=1:n2 
       d21(i)=(-1/2)*DC1-(1/2)*(X2(i,:)-M1(1,:))*IC1*(X2(i,:)-M1(1,:))'+LP1; 
       d22(i)=(-1/2)*DC2-(1/2)*(X2(i,:)-M2(1,:))*IC2*(X2(i,:)-M2(1,:))'+LP2; 
100    if d21(i) > d22(i) 
          CM1(2,1)=CM1(2,1)+1; 
       else 
          CM1(2,2)=CM1(2,2)+1; 
       end  
    end 
  
    %calculate discriminant loadings 
    b = ICP*(M1-M2)'; 
    Dbx = inv(sqrt(b'*CP*b)); 
110 Dx = inv(sqrt(diag(diag(CP)))); 
    DL = Dbx*Dx*CP*b; 
    toc 
    end 



122 
 

Appendix I – 3-way Quadratic Discrimination  

1  % Perform Quadratic Discriminant Analysis on three given matrices 
   % If more than three populations exist, the code must be altered 
   % Inputs required: 
   % X1,X2,X3  = Indicator Data Matrices 
   % P1,P2,P3  = Prior Probabilities 
  
   % Outputs: 
   % CP        = Indicator Pooled Covariation Matrix 
   % CM        = Confusion Matrix 
10 % DL12      = Discriminant Loadings Group 1 vs. Group 2 
   % DL23      = Discriminant Loadings Group 2 vs. Group 3 
   % DL13      = Discriminant Loadings Group 1 vs. Group 3 
  
   function [CP,CM,CM1,DL12,DL23,DL13] = QuadDisc3(X1,X2,X3,P1,P2,P3) 
  
   %attempt to dummy proof and avoid infinite loops, if inputs are not specified 
   if nargin < 6, P3 = 1/3; end 
   if nargin < 5, P2 = 1/3; end 
   if nargin < 4, P1 = 1/3; end 
20 n1=length(X1); 
   n2=length(X2); 
   n3=length(X3); 
  
   % Find Mean (M) of each matrix then center (XD): 
   M1 = mean(X1); 
   E1 = diag(ones(n1)); 
   XD1 = X1 - E1 * M1; 
   M2 = mean(X2); 
   E2 = diag(ones(n2)); 
30 XD2 = X2 - E2 * M2;  
   M3 = mean(X3); 
   E3 = diag(ones(n3)); 
   XD3 = X3 - E3 * M3; 
  
   %Calculate Pooled Covariance matrix(CP), confusion matrices(CM, CM1)  
   CP = (1/(n1+n2+n3-3))*((XD1'*XD1)+(XD2'*XD2)+(XD3'*XD3)); 
   CM = [0,0,0;0,0,0;0,0,0]; 
   CM1 = [0,0,0;0,0,0;0,0,0]; 
  
40 % Calculate quadratic discriminant using pooled covariance matrix 
   % and compare values to fill in confusion matrix 
   for i=1:n1 
       d11=(-1/2)*log(det(CP))-(1/2)*(X1(i,:)-M1(1,:))*inv(CP)*(X1(i,:)-M1(1,:))'+log(P1); 
       d12=(-1/2)*log(det(CP))-(1/2)*(X1(i,:)-M2(1,:))*inv(CP)*(X1(i,:)-M2(1,:))'+log(P2); 
       d13=(-1/2)*log(det(CP))-(1/2)*(X1(i,:)-M3(1,:))*inv(CP)*(X1(i,:)-M3(1,:))'+log(P3); 
       if d11 > d12 && d11 > d13 
          CM(1,1)=CM(1,1)+1; 
       elseif d12 > d11 && d12 > d13 
          CM(1,2)=CM(1,2)+1; 
50     else 
          CM(1,3)=CM(1,3)+1; 
      end 
   end 
   for i=1:n2 
       d21=(-1/2)*log(det(CP))-(1/2)*(X2(i,:)-M1(1,:))*inv(CP)*(X2(i,:)-M1(1,:))'+log(P1); 
       d22=(-1/2)*log(det(CP))-(1/2)*(X2(i,:)-M2(1,:))*inv(CP)*(X2(i,:)-M2(1,:))'+log(P2); 
       d23=(-1/2)*log(det(CP))-(1/2)*(X2(i,:)-M3(1,:))*inv(CP)*(X2(i,:)-M3(1,:))'+log(P3); 
       if d21 > d22 && d21 > d23 
           CM(2,1)=CM(2,1)+1; 
 60    elseif d22 > d21 && d22 > d23 
           CM(2,2)=CM(2,2)+1; 
       else 
           CM(2,3)=CM(2,3)+1; 
       end 
   end 
   for i=1:n3 
       d31=(-1/2)*log(det(CP))-(1/2)*(X3(i,:)-M1(1,:))*inv(CP)*(X3(i,:)-M1(1,:))'+log(P1); 
       d32=(-1/2)*log(det(CP))-(1/2)*(X3(i,:)-M2(1,:))*inv(CP)*(X3(i,:)-M2(1,:))'+log(P2); 
       d33=(-1/2)*log(det(CP))-(1/2)*(X3(i,:)-M3(1,:))*inv(CP)*(X3(i,:)-M3(1,:))'+log(P3); 
70     if d31 > d32 && d31 > d33 
           CM(3,1)=CM(3,1)+1; 
       elseif d32 > d31 && d32 > d33 
           CM(3,2)=CM(3,2)+1; 
       else 



123 
 

        CM(3,3)=CM(3,3)+1; 
      end  
   end 
   % Calculate quadratic discriminant using individual covariance matrices 
   % and compare values to fill in confusion matrix 
80 for i=1:n1 
       d11=(-1/2)*log(det(cov(X1)))-(1/2)*(X1(i,:)-M1(1,:))*inv(cov(X1))*(X1(i,:)-M1(1,:))'+log(P1); 
       d12=(-1/2)*log(det(cov(X2)))-(1/2)*(X1(i,:)-M2(1,:))*inv(cov(X2))*(X1(i,:)-M2(1,:))'+log(P2); 
       d13=(-1/2)*log(det(cov(X3)))-(1/2)*(X1(i,:)-M3(1,:))*inv(cov(X3))*(X1(i,:)-M3(1,:))'+log(P3); 
       if d11 > d12 && d11 > d13 
           CM1(1,1)=CM1(1,1)+1; 
       elseif d12 > d11 && d12 > d13 
           CM1(1,2)=CM1(1,2)+1; 
       else 
           CM1(1,3)=CM1(1,3)+1; 
90     end 
    end 
    for i=1:n2 
       d21=(-1/2)*log(det(cov(X1)))-(1/2)*(X2(i,:)-M1(1,:))*inv(cov(X1))*(X2(i,:)-M1(1,:))'+log(P1); 
       d22=(-1/2)*log(det(cov(X2)))-(1/2)*(X2(i,:)-M2(1,:))*inv(cov(X2))*(X2(i,:)-M2(1,:))'+log(P2); 
       d23=(-1/2)*log(det(cov(X3)))-(1/2)*(X2(i,:)-M3(1,:))*inv(cov(X3))*(X2(i,:)-M3(1,:))'+log(P3); 
       if d21 > d22 && d21 > d23 
           CM1(2,1)=CM1(2,1)+1; 
       elseif d22 > d21 && d22 > d23 
           CM1(2,2)=CM1(2,2)+1; 
100    else 
        CM1(2,3)=CM1(2,3)+1; 
       end 
    end 
    for i=1:n3 
       d31=(-1/2)*log(det(cov(X1)))-(1/2)*(X3(i,:)-M1(1,:))*inv(cov(X1))*(X3(i,:)-M1(1,:))'+log(P1); 
       d32=(-1/2)*log(det(cov(X2)))-(1/2)*(X3(i,:)-M2(1,:))*inv(cov(X2))*(X3(i,:)-M2(1,:))'+log(P2); 
       d33=(-1/2)*log(det(cov(X3)))-(1/2)*(X3(i,:)-M3(1,:))*inv(cov(X3))*(X3(i,:)-M3(1,:))'+log(P3); 
       if d31 > d32 && d31 > d33 
           CM1(3,1)=CM1(3,1)+1; 
110    elseif d32 > d31 && d32 > d33 
           CM1(3,2)=CM1(3,2)+1; 
       else 
           CM1(3,3)=CM1(3,3)+1; 
       end  
    end 
  
    %calculate discriminant loadings 
    %Group 1 vs group 2 
    CP12 = (1/(n1+n2-2))*((XD1'*XD1)+(XD2'*XD2)); 
120 b = inv(CP12)*(M1-M2)'; 
    Dbx = inv(sqrt(b'*CP12*b)); 
    Dx = inv(sqrt(diag(diag(CP12)))); 
    DL12 = Dbx*Dx*CP12*b; 
  
    %Group 2 vs group 3 
    CP23 = (1/(n2+n3-2))*((XD2'*XD2)+(XD3'*XD3)); 
    b = inv(CP23)*(M2-M3)'; 
    Dbx = inv(sqrt(b'*CP23*b)); 
    Dx = inv(sqrt(diag(diag(CP23)))); 
130 DL23 = Dbx*Dx*CP*b; 
  
    %Group 1 vs group 3 
    CP13 = (1/(n1+n3-2))*((XD1'*XD1)+(XD3'*XD3)); 
    b = inv(CP13)*(M1-M3)'; 
    Dbx = inv(sqrt(b'*CP13*b)); 
    Dx = inv(sqrt(diag(diag(CP13)))); 
    DL13 = Dbx*Dx*CP*b; 
  
    end 
140  



124 
 

Appendix J – Nov21 Test Plan 

Run 
#

Activity 
Level

Malware 
Present

1 2 N
2 2 N
3 1 Y
4 2 Y
5 1 Y
6 2 N
7 1 N
8 2 Y
9 2 N

10 1 N
11 2 Y
12 1 Y
13 3 N
14 3 Y
15 1 N
16 3 N
17 3 N
18 2 Y
19 3 Y
20 2 Y
21 1 N
22 3 Y
23 1 Y
24 2 N
25 1 Y
26 3 Y
27 3 N
28 3 N
29 3 Y
30 1 N   



125 
 

  Bibliography 

AFDD 2-5. (11 January 2005). Information Operations.  

Amoroso, E. (1999). Intrusion Detection - An Introduction to Internet Surveillance, 
Correlation, Trace Back, Traps, and Response. Sparta, NJ: Intrusion.Net Books. 

Anderson, D., Frivold, T., & Valdes, A. (1995). Next-generation Intrusion Detection 
Expert System (NIDES): A Summary. Department of Navy, Space and Naval 
Warfare Systems Command, Computer Science Laboratory. Menlo Park, CA: SRI 
International. 

Arsenin, I. (2008). IARSN - High Quality System Software. Retrieved Oct 15, 2008, from 
IARSN - High Quality System Software: http://www.iarsn.com 

Bace, R. (2000, January 4). An Introduction to Intrusion Detection and Assessment. 
Retrieved November 19, 2008, from ICSA Labs: 
http://www.icsalabs.com/icsa/docs/html/communities/ids/whitepaper/Intrusion1.p
df 

Balducelli, C., Bologna, S., Lavalle, L., & Vicoli, G. (2007). Safeguarding information 
intensive critical infrastructures against novel types of emerging failures. 
Reliability Engineering and System Safety , 92 (9), 1218-1229. 

Bell, D. E., & LaPadula, L. (1973). Secure Computer Systems: Mathematical 
Foundations. Bedford, MA: MITRE Corp. 

Brugger, S. T., Kelley, M., Sumikawa, K., & Wakumoto, S. (2001). Data Mining for 
Security Information: A Survey. 8th Association for Computing Machinery 
Conference on Computer & Communications Security. Philadelphia, PA: U.S. 
Department of Energy - Lawrence Livermore National Laboratory. 

Buennemeyer, T. K., Gora, M., Marchany, R. C., & Tront, J. G. (2007). Battery 
Exhaustion Attack Detection with Small Handheld Mobile Computers. 
International Conference on Portable Information Devices (pp. 144-148). 
Orlando, FL: Institute for Electrical and Electronics Engineers. 

Chen, Y., Dai, L., Li, Y., & Cheng, X.-Q. (2007). Building lightweight intrusion 
Detection System Based on Principal Component Analysis and C4.5 Algorithm. 
9th International Conference on Advanced Communication Technology (pp. 
2109-2112). Gangwon-Do, South Korea: Institute of Electrical and Electronics 
Engineers Inc. 

da Silva, A. P., Martins, M., Rocha, B., Loureiro, A., Ruiz, L., & Wong, H. (2005). 
Decentralized Intrusion Detection in Wireless Sensor Networks. Proceedings of 
the 1st ACM international workshop on Quality of service & security in wireless 



126 
 

and mobile networks (pp. 16- 23). Montreal, Canada: Association for Computing 
Machinery. 

Debar, H., Becker, M., & Siboni, D. (1992). A Neural Network Component for an 
Intrusion Detection System. 1992 IEEE Symposium on Security and Privacy (p. 
240). Institute of Electrical and Electronics Engineers. 

Denning, D. (1986). An Intrusion Detection Model. Symposium on Security and Privacy 
(pp. 118-131). Oakland, CA: Institute of Electrical and Electronics Engineers. 

Dillon, W. R., & Goldstein, M. (1984). Multivariate Analysis Methods and Applications. 
New York, NY: John Wiley & Sons. 

EICAR. (2006, September 7). The Anti-Virus or Anti-Malware Test File. Retrieved 
October 31, 2008, from EICAR: http://eicar.org/anti_virus_test_file.htm 

Fisher, S. R. (1936). The Use of Multiple Measurements in Taxonomic Problems. Annals 
of Eugenics , 7, 179-188. 

Forrest, S., Allen, L., Perelson, A. S., & Cherukuri, R. (1994). Self-nonself 
discrimination in a computer. Proceedings of the IEEE Computer Society 
Symposium on Research in Security and Privacy (pp. 202-212). Oakland, CA: 
Institute of Electrical and Electronics Engineers Inc. 

Fox, A., Kiciman, E., & Patterson, D. (2004). Combining Statistical Monitoring and 
Predictable Recovery for Self-Management. Proceedings of the 1st ACM 
SIFSOFT workshop on self-managed systems (pp. 49-53). Newport Beach, CA: 
Association for Computing Machinery. 

Francis, P., Leon, D., Minch, M., & Podgurski, A. (2004). Tree-Based Methods for 
Classifying Software Failures. Proceedings - International Symposium on 
Software Reliability Engineering (pp. 451-462). Saint-Malo, France: Institute of 
Electrial and Electronics Engineers Inc. 

GAO. (1996). Information Security - Computer Attacks at Department of Defense Pose 
Increasing Risk. Accounting and Information Management Division, Defense 
Information Security Agency. Washington D.C.: United States Government 
Accountability Office. 

GAO. (2008). Information Security - Progress Reported, but Weaknesses at Federal 
Agencies Persist. United States Government Accountability Office. Washington 
D.C.: United States Government Accountability Office. 

Hart, S. (2007). APHID: Anomaly Processor in Hardware for Intrusion Detection. AFIT, 
ENG. Wright-Patterson AFB, OH: Air Force Institute of Technology. 



127 
 

Hassan, H., Mahmoud, M., & El-Kassas, S. (2006). Securing the AODV Protocol Using 
Specification-Based Intrusion Detection. Q2SWinet 2006: 2nd ACM International 
Workshop on Quality of Service and Security in Wireless and Mobile Networks 
(pp. 33-36). Terromolinos, Spain: Association for Computing Machinery. 

Huang, Y.-a., & Wenke, L. (2003). A Cooperative Intrusion Detection System for Ad 
Hoc Networks. 1st ACM Workshop Security of Ad-hoc and Sensor Networks (pp. 
135-147). Fairfax, VA: Association for Computing Machinery. 

Huang, Y.-a., Fan, W., Lee, W., & Yu, P. (2003). Cross-Feature Analysis for Detecting 
Ad-Hoc Routing Anomalies. The 23rd IEEE International Conference on 
Distributed Computing Systems (pp. 478-487). Providence, RI: Institute of 
Electrical and Electronics Engineers. 

Hussein, M., & Zulkernine, M. (2007). Intrusion Detection Aware Component-Based 
Systems: A Specification-Based Framework. Journal of Systems and Software , 
80 (5), 700-710. 

Johnson, R. (2008). Improved Feature Extraction, Feature Selection, and Identification 
Techniques That Create a Fast Unsupervised Hyperspectral Target Detection 
Algorithm. Wright-Patterson AFB, OH: Air Force Institute of Technology (Air 
University Press). 

Kabiri, P., & Ghorbani, A. (2005). Research on Intrusion Detection and Response: A 
Survey. International Journal of Network Security , 1 (2), 84-102. 

Khan, L., Awad, M., & Thuraisingham, B. (2007). A New Intrusion Detection System 
Using Support Vector Machines and Hierarchical Clustering. The VLDB Journal , 
16 (4), 507-521. 

Kim, D. S., Nguyen, H.-N., & Park, J. S. (2005). Genetic Algorithm to Improve SVM 
Based Network Intrusion Detection. Proceedings - 19th International Conference 
on Advanced Information Networking and Applications. v 2, pp. 155-158. Taipei, 
Taiwan: Institute of Electrical and Electronic Engineers Inc. 

Lee, W., Nimbalkar, R., Yee, K., Patil, S., Desai, P., Tran, T., et al. (2000). A Data 
Mining and CIDF Based Approach for Detecting Novel and Distributed 
Intrusions. In H. Debar, L. Me, & S. F. Wu (Ed.), Recent Advances in Intrusion 
Detection, 3rd International Symposium. 1907, pp. 49-65. Toulouse, France: 
Springer. 

Mahalanobis, P. C. (1936). On the Generalised Distance in Statistics. Proceedings of the 
National Institute of Sciences of India , 2, 49-55. 



128 
 

Mell, P., Hu, V., Lippmann, R., Haines, J., & Zissman, M. (2003). An Overview of Issues 
in Testing Intrusion Detection Systems. Defense Advanced Research Projects 
Agency. National Institue of Standards and Technology. 

Merkle, L. D., Carlisle, M. C., Humphries, J. W., & Lopez, D. W. (2002). EA-Based 
Approach for Detecting Stealthy Attacks. Proceedings of the 2002 IEEE 
Workshop on Information Assurance. West Point, NY: Institute of Electrical and 
Electronic Engineers Inc. . 

Montgomery, D. C. (1991). Introduction to Statistical Quality Control (2 ed.). New York, 
NY: John Wiley & Sons. 

Mott, S. (2007). Exploring Hardware-based Primitives to Enhance Parallel Security 
Monitoring in a Novel Computing Architecture. AFIT, ENG. Wright-Patterson 
AFB, OH: Air Force Institute of Technology (Air University Press). 

NIAC, N. I. (2003, February). The National Strategy to Secure Cyberspace. 
http://www.whitehouse.gov/pcipb/. 

Northcutt, S. (1999). Network Intrusion Detection - An Analyst's Handbook. Indianapolis, 
IN: New Riders. 

Pillai, M. M., Eloff, J. H., & Venter, H. S. (2004). An Approach to Implement a Network 
Intrusion Detection System Using Genetic Algorithms. Annual Research 
Conference of the South African Institute of Computer Scientists and Information 
Technologists on IT Research in Developing Countries. 75, pp. 221-228. 
Stellenbosch, South Africa: South African Institute of Computer Scientists and 
Information Technologists. 

Sekar, R., Gupta, R., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H., et al. (2002). 
Specification Based Anomaly Detection: A New Approach for Detecting Network 
Intrusions. Proceedings of the 9th ACM Conference on Computer and 
Communication Security (pp. 265-274). Washington D.C.: Association for 
Computing Machinery. 

Shyu, M.-L., Quirino, T., Xie, Z., Chen, S.-C., & Chang, L. (2007). Network Intrusion 
Detection Through Adaptive Sub-Eigenspace Modeling in Multiagent Systems. 
ACM Transactions on Autonomous and Adaptive Systems , 2 (3), 9:1-37. 

Skoudis, E., & Zeltser, L. (2004). Malware - Fighting Malicious Code. Upper Saddle 
River, NJ: Prentice Hall. 

Snapp, S., Brentano, J., Dias, G., Goan, T., Heberlein, L. T., Ho, C.-L., et al. (1991). 
DIDS (Distributed Intrusion Detection System) - Motivation, Architecture, and an 
Early Prototype. Proceedings of the 14th National Computer Science Conference, 
(pp. 167-176). Washington D.C. 



129 
 

Tarakanov, A. (2008, May). Immunocomputing for Intelligent Intrusion Detection. IEEE 
Computational Intelligence Magazine , 22-30. 

Uniblue. (2008). Uniblue ProcessLibrary.com. Retrieved December 4, 2008, from 
Processes Directory: http://www.processlibrary.com/directory/ 

Uniblue. (2008). Uniblue www.uniblue.com. Retrieved December 4, 2008, from Products: 
http://www.liutilities.com/products/wintaskspro/processlibrary/ 

USCERT. (2008, Nov 7). US Computer Emergency Response Team. Retrieved Jan 23, 
2009, from Quarterly Trends and Analysis Report: http://www.us-
cert.gov/press_room/trendsanalysisQ408.pdf 

Wikipedia. (2008, December 13). Sub7. Retrieved December 16, 2008, from Wikipedia: 
http://en.wikipedia.org/wiki/Sub7 

Wong, W.-T., & Lai, C.-Y. (2006). Identifying important features for intrusion detection 
using Discriminant Analysis and Support Vector Machine. International 
Conference on Machine Learning and Cybernetics. v 2006, pp. 3563-3567. 
Dalian, China: Institute of Electrical and Electronics Engineers Computer Society. 

Wu, N., & Zhang, J. (2006). Factor Analysis Based Anomaly Detection and Clustering. 
Decision Support Systems , 42 (1), 375-389. 

Yongguang, Z., Wenke, L., & Huang, Y.-a. (2003). Intrusion Detection Techniques for 
Mobile Wireles Networks. Wireless Networks , 9 (5), 545-556. 

Zhang, Y., Lee, W., & Huang, Y.-a. (2003). Intrusion Detection Techniques for Mobile 
Wireless Networks. Wireless Networks , 9 (5), 545-556. 

 

  



130 
 

Vita 
 
 Major Shilland graduated from the University of Michigan with a BS in 

Aerospace Engineering in 1992.  He entered the Air Force a year later as a distinguished 

graduate of Officer Training School.  His first assignment was with the 1st Space 

Operations Squadron as a satellite operations officer; he performed command and control 

for launch, early orbit, and station keeping on: DSP, DMSP, GPS, and TAOS spacecraft.  

He attended Undergraduate Navigator Training with the Navy at Pensacola NAS, and 

transitioned to the flying world as a navigator on the B-52H.  After upgrading to Radar 

Navigator (bombardier) and earning distinguished graduate honors at Squadron Officer 

School, he volunteered as an Air Liaison Officer and was a distinguished graduate again 

at the Joint Firepower Control Course.   

 He then trained with the Special Forces and deployed with 5th Group during the 

first days of Operation IRAQI FREEDOM, for which he was awarded a Bronze Star.  He 

has also been deployed as Director of Operations with the 19th Air Support Operations 

Squadron in the 101st Airborne Division Headquarters, Mosul, Iraq, after which he 

returned to flying as an instructor and flight commander.  His most recent deployment 

was as Assistant Director of Operations with the 23rd Expeditionary Bomb Squadron in 

support of Operation ENDURING FREEDOM, flying 327 combat hours out of Diego 

Garcia, British Indian Ocean Territories. 

 Major Shilland was accepted to the Air Force Institute of Technology as an 18-

month Intermediate Developmental Education student in the Operations Research 

department in 2007.  He was recently promoted to Lieutenant Colonel and starts studies 

at the School of Advanced Air and Space Studies in Montgomery, Alabama in July 2009.



 
 

 REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, 
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

02-26-2009 
2. REPORT TYPE  

Master’s Thesis 
3. DATES COVERED (From – To) 

Jul 2007 - Mar 2009 
4.  TITLE AND SUBTITLE 

HOST-BASED MULTIVARIATE STATISTICAL COMPUTER 
OPERATING PROCESS ANOMALY INTRUSION DETECTION 
SYSTEM (PAIDS) 

5a.  CONTRACT NUMBER 
 
5b.  GRANT NUMBER 
 
5c.  PROGRAM ELEMENT NUMBER 
 

6.  AUTHOR(S) 
 

Shilland, Glen R., Major, USAF 
 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 
 
5f.  WORK UNIT NUMBER 
 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 

 Air Force Institute of Technology 
Graduate School of Engineering and Management (AFIT/EN) 
2950 Hobson Street, Building 642 
WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 

AFIT/GOR/ENS/09-15 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Dr. Steven K. Rogers                        Dr. N. Adam Fraser 
Air Force Research Laboratory        Air Force Information Operations Center 
Sensor and Information Directorate  Information Operations Technologies 
2241 Avionics Circle                        102 Hall Blvd, Suite 345 
WPAFB OH 45433-7334                  San Antonio, TX 78243-7038 

10. SPONSOR/MONITOR’S ACRONYM(S) 

AFRL/RY, AFIOC/IOT 
11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
13. SUPPLEMENTARY NOTES  
 

14. ABSTRACT   Most intrusion detection systems rely on signature matching of known malware or anomaly 
discrimination by data mining historical network traffic.   This renders defended systems vulnerable to new or 
polymorphic code and deceptive attacks that do not trigger anomaly alarms.  A lightweight, self-aware intrusion 
detection system (IDS) is essential for the security of government and commercial networks, especially mobile, 
ad-hoc networks (MANETs) with relatively limited processing power.  This research proposes a host-based, 
anomaly discrimination IDS using operating system process parameters to measure the “health” of individual 
systems.  Principal Component Analysis (PCA) is employed for feature set selection and dimensionality 
reduction, while Mahalanobis Distance (MD) and is used to classify legitimate and illegitimate activity.  This 
combination of statistical methods provides an efficient computer operating process anomaly intrusion detection 
system (PAIDS) that maximizes detection rate and minimizes false positive rate, while updating its sense of “self” 
in near-real-time.  

15. SUBJECT TERMS  host-based computer intrusion detection system, multivariate statistical anomaly detection, 
Mahalanobis Distance, Principal Component Analysis 
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF  

     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

142 

19a.  NAME OF RESPONSIBLE PERSON 

Kenneth W. Bauer, Jr., PhD, ENS 
a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 
19b.  TELEPHONE NUMBER (Include area code) 

(937) 255-3636 x4328 kenneth.bauer@afit.edu 



 
 

 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 


	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Background
	Introduction
	What is an intrusion?
	What is malware?
	Who is the threat?
	The first line of defense
	What is an IDS?
	A host-based, statistical anomaly IDS proposal
	Optimization

	Literature Review
	Intrusion Detection Categorization
	Host-Based
	Network-Based
	Signature-Based
	Anomaly-Based
	Specification-Based

	Mobile Ad-hoc Networks
	Dimension Reduction
	Principal Component Analysis
	Factor Analysis
	Dimensionality Assessment

	Anomaly Classification
	Discriminant Analysis
	Quadratic Discrimination and Mahalanobis Distance
	Support Vector Machines
	Decision Trees
	Genetic Algorithms
	Neural Networks
	Immune System Algorithms

	Data Generation
	Repeatable, Sanitized, and Realistic
	Trustworthiness


	Methodology
	Problem Definition
	Assumptions and Hypotheses
	Properties of PAIDS

	Tools
	MATLAB®
	TaskInfo
	Sub7

	Experimental Design
	Factors
	Test Runs
	Data Collection

	Implementation
	Hardware Environment
	Software Environment
	Data Acquisition and Formatting

	Statistical Methods
	Factor Analysis
	Principal Component Analysis
	Quadratic Discrimination


	Results and Analysis
	Oct 31 Test – Component Scores
	Nov 7 Test – Component Scores vs. Time
	Nov 21 Test – Principal Component Analysis-Mahalanobis Distance (PCA-MD)
	Nov 25 Test – PCA-PCA-MD
	PCA-PCA-MD-QD
	Comparison to other IDSs
	Key Operating System Processes

	Discussion
	Conclusions
	Limitations
	Contributions
	Future Research

	Appendix A – Output Data from TaskInfo in Excel Format
	Appendix A – Output Data from TaskInfo in Excel Format (cont.)
	Appendix B – SubSeven Command Screens
	/
	Appendix C – TaskInfo Screenshot
	/
	Appendix D – Import Data
	Appendix E – Principal Component Analysis Baseline
	Appendix F – PCA/Mahalanobis Distance
	Appendix G – Factor Analysis/Mahalanobis Distance
	Appendix H – 2-way Quadratic Discrimination
	Appendix I – 3-way Quadratic Discrimination
	Appendix J – Nov21 Test Plan
	Bibliography
	Vita

